精英家教网 > 高中数学 > 题目详情
(12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD//BC且AD﹥BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M为PC的中点。

(1)求二面角M—AD—C的大小;(6分)
(2)如果∠AMD=90°,求线段AD的长。(6分)

(1)
(2)2
(1)取AC的中点H,连MH,则MH//PA,所以MH⊥平面ABCD,过H作HN⊥AD于N,连MN,由三垂线定理可得MN⊥AD,则∠MNH就为所求的二面角的平面角

AH
在Rt△ANH中,
则在Rt△MHN中,
故所示二面角的大小为
(2)若AM⊥MD,又因为PA=AC=,M为PC的中点,
则AM⊥PC,所以AM⊥平面PCD,则AM⊥CD。
AM在平面ABCD的射影为CD,由三垂线定理可知其等价于AC⊥CD,
此时△ACD为等腰直角三角形,所以AD=AC=2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如下图,面的中点,内的动点,且到直线的距离为的最大值为  
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ADEF和等腰梯形ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AC所成的角的余弦值;
(III)在线段BE上是否存在一点P,使得平面平面BCEF?若存在,求出 的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图所示,正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1中点,则B1到平面ABF的距离为 (  )
(A)                 (B)                     
(C)                 (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
如图5,在底面为直角梯形的四棱锥中,

(1)求证:
(2)求直线
(3)设点E在棱PC上,,若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)当时,求直线AP与平面BDD1B1所成角的度数;
(2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示的空间几何体,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=2,BE和平面ABC所成的角为.且点E在平面ABC上的射影落在的平分线上。

(I)求证:DE//平面ABC;
(II)求二面角E—BC—A的余弦;
(III)求多面体ABCDE的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知α,β是平面,m,n是直线。下列命题中不正确的是 (  )          
A.若m∥n,m⊥α,则n⊥αB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥βD.若m⊥α,,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
在多面体中,点是矩形的对角线的交点,三角形是等边三角形,棱
(Ⅰ)证明:平面
(Ⅱ)设
与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案