精英家教网 > 高中数学 > 题目详情
如图,在多面体中,已知平面是边长为的正方形,,,且与平面的距离为,则该多面体的体积为(    )
A.B.C.5D.6
B

思路解析:分别取AB、CD的中点G、H连EG,GH,EH,把该多面体分割成一个四棱锥与一个三棱柱,可求得四棱锥的体积为3,三棱柱的体积,进而整个多面体的体积为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如下图,面的中点,内的动点,且到直线的距离为的最大值为  
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,底面是直角梯形,平面. 

(1)求证:平面
(2)求证:平面
(3)若M是PC的中点,求三棱锥M—ACD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是(   )
A.平行B.垂直C.相交不垂直D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
  已知:如图,长方体中,分别是棱,上的点,,.
  (1) 求异面直线所成角的余弦值;
  (2) 证明平面
  (3) 求二面角的正弦值.
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ADEF和等腰梯形ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AC所成的角的余弦值;
(III)在线段BE上是否存在一点P,使得平面平面BCEF?若存在,求出 的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图所示,正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1中点,则B1到平面ABF的距离为 (  )
(A)                 (B)                     
(C)                 (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)当时,求直线AP与平面BDD1B1所成角的度数;
(2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,则异面直线A1B与AC所成角的余弦值是           

查看答案和解析>>

同步练习册答案