精英家教网 > 高中数学 > 题目详情
如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点,
PA⊥底面ABCD,PA=    
             
(1)证明:平面PBE⊥平面PAB
(2)求二面角A—BE—P的大小。

(1)略
(2)600
(1)连BD,由ABCD是菱形且∠BCD=600知△BCD是等边三角形。∵E中CD中点
∴BE⊥CD 又AB∥CD,∴BE⊥AB         (2分)
又∵PA⊥平面ABCD,BE平面ABCD∴PA⊥BE  (4分)
而PA∩AB=A ∴BE⊥平面PAB又BE平面PBE ∴平面PBE⊥平面PAB(6分)
(2)由(1)知BE⊥平面PAB ∴BE⊥PB又BE⊥AB∴∠PBA是二面角A—BE—P的平面角  (9分)
在RT△PAB中,tan∠PBA= ∴∠PBA=600  (11分)
故二面角A—BE—P的大小是600   (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如下图,面的中点,内的动点,且到直线的距离为的最大值为  
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,底面是直角梯形,平面. 

(1)求证:平面
(2)求证:平面
(3)若M是PC的中点,求三棱锥M—ACD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14 分)如图(1)是一正方体的表面展开图,MN 和PB 是两条面对角线,请在图(2)的正方体中将MN 和PB 画出来,并就这个正方体解决下面问题。

(1)求证:MN//平面PBD;
(2)求证:AQ⊥平面PBD;
(3)求二面角P—DB—M 的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体ABCD-A1B1C1D1中

(1)求证:∥平面C1BD
(2)求证:A1C平面C1BD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
棱锥的底面正方形,侧棱的中点在底面内的射影恰好是正方形的中心顶点在截面的射影恰好是的重心

(1)求直线与底面所成角的正切值;
(2)设,求此四棱锥过点的截面面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图所示,正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1中点,则B1到平面ABF的距离为 (  )
(A)                 (B)                     
(C)                 (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,三棱柱的所有棱长均等于1,且
,则该三棱柱的体积是 ▲ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,则异面直线A1B与AC所成角的余弦值是           

查看答案和解析>>

同步练习册答案