精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$)

分析 f(x)=xlnx-ax2(x>0),f′(x)=lnx+1-2ax.令g(x)=lnx+1-2ax,由于函数f(x)=x(lnx-ax)有两个极值点?g(x)=0在区间(0,+∞)上有两个实数根.求出函数的导数,当a≤0时,直接验证;当a>0时,利用导数研究函数g(x)的单调性可得:当x=$\frac{1}{2a}$时,函数g(x)取得极大值,故要使g(x)有两个不同解,只需要g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,解得即可.

解答 解:f(x)=xlnx-ax2(x>0),f′(x)=lnx+1-2ax,
令g(x)=lnx+1-2ax,
∵函数f(x)=x(lnx-ax)有两个极值点,则g(x)=0在区间(0,+∞)上有两个实数根,
g′(x)=$\frac{1-2ax}{x}$,
当a≤0时,g′(x)>0,则函数g(x)在区间(0,+∞)单调递增,
因此g(x)=0在区间(0,+∞)上不可能有两个实数根,应舍去,
当a>0时,令g′(x)=0,解得x=$\frac{1}{2a}$,
令g′(x)>0,解得0<x<$\frac{1}{2a}$,此时函数g(x)单调递增,
令g′(x)<0,解得x>$\frac{1}{2a}$,此时函数g(x)单调递减,
∴当x=$\frac{1}{2a}$时,函数g(x)取得极大值,
当x趋近于0与x趋近于+∞时,g(x)→-∞,
要使g(x)=0在区间(0,+∞)上有两个实数根,
则g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,解得0<a<$\frac{1}{2}$,
∴实数a的取值范围是(0,$\frac{1}{2}$),
故选:A.

点评 本题考查了利用导数研究函数的单调性极值,考查了等价转化方法,考查了推理能力和计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.数列{an}的通项公式an=n2-2λn+1,若数列{an}为递增数列,则λ的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.$(-∞,\frac{3}{2})$D.$(-∞,\frac{3}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2+2015x-a<0},若1∉A,则实数a的取值范围为(  )
A.a≤2016B.a>2016C.a≤2015D.a>2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列 1,$\frac{3}{{2}^{2}}$,$\frac{4}{{2}^{3}}$,$\frac{5}{{2}^{4}}$,…,$\frac{n+1}{{2}^{n}}$ 的前n项和等于(  )
A.Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-1}}$B.Sn=3-$\frac{n+1}{{2}^{n}}$-1-$\frac{1}{{2}^{n-2}}$
C.Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-2}}$D.Sn=3-n2n--$\frac{1}{{2}^{n-2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.各项均为正数的等差数列{an}中,a5•a8=36,则前12项和S12的最小值为72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据的立方和为(  )
A.70B.60C.50D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=cos2x-6cosx+6的最小值是(  )
A.1B.-1C.-11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.小波以游戏的方式决定是去打球、唱歌还是去下棋.游戏规则为以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.
(1)写出数量积X的所有可能取值
(2)分别求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x,y为实数,若4x2+y2+xy=5,则2x+y的最大值是2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案