精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{{\begin{array}{l}{x^2}{({x>0})\;}\\{{3^x}(x<0})\;}\end{array}}$,则f[f(-2)]=$\frac{1}{81}$..

分析 -在x<0这段上代入这段的解析式求出f(-2),将结果代入对应的解析式,求出函数值即可.

解答 解:∵f(x)=$\left\{{\begin{array}{l}{x^2}{({x>0})\;}\\{{3^x}(x<0})\;}\end{array}}$,
∴f(-2)=$\frac{1}{9}$
∴f[f(-3)]=f($\frac{1}{9}$)=$\frac{1}{81}$.
故答案为:$\frac{1}{81}$.

点评 本题考查求分段函数的函数值:根据自变量所属范围,分段代入求.分段函数分段处理,这是研究分段函数图象和性质最核心的理念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求a的取值范围,使得函数y=log2[x2+(a-1)x+$\frac{9}{4}$]的定义域为全体实数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆x2+y2-4y=0被过原点且倾斜角为45°的直线所截得的弦长为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当0<x<$\frac{π}{4}$时,函数y=$\frac{co{s}^{2}x}{cosxsinx-si{n}^{2}x}$的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式6-x-2x2<0的解集是(  )
A.{x|-$\frac{3}{2}$<x<2}B.{x|-2<x<$\frac{3}{2}$}C.{x|x<-$\frac{3}{2}$或x>2}D.{x|x<-2或x>$\frac{3}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+bx+c有两个零点0和-2,且g(x)和f(x)的图象关于原点对称.
(1)求函数f(x)和g(x)的解析式;
(2)解不等式f(x)≥g(x)+6x-4;
(3)如果f(x)定义在[m,m+1],f(x)的最大值为g(m),求g(m)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从某校参加高二年级学业水平考试模拟考试的学生中抽取60名学生,将其数学成绩分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,画出如图的频率分布直方图.根据图形信息,解答下列问题:
(1)估计这次考试成绩的平均分;
(2)估计这次考试成绩的及格率和众数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=-ex+ex(e为自然对数的底数)
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设g(x)=lnx+$\frac{1}{2}$x2+ax,若对任意x1∈(0,2],总存在x2∈(0,2].使得g(x1)<f(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆(x-1)2+(y-1)2=4的圆心的极坐标是$(\sqrt{2},\frac{π}{4})$.

查看答案和解析>>

同步练习册答案