| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | -$\frac{7}{8}$ | D. | -$\frac{3}{8}$ |
分析 由题意利用函数的单调性,函数的奇偶性可得只有一个x的值,使f(2x2+1)=f(x-λ),即只有一个x的值,使2x2+1=x-λ,由判别式等于零,求得λ的值.
解答 解:∵函数y=f(x2)+f(k-x)只有一个零点,∴只有一个x的值,使f(2x2+1)+f(λ-x)=0.
∵函数f(x)是奇函数,∴只有一个x的值,使f(2x2+1)=f(x-λ),
又函数f(x)是R上的单调函数,∴只有一个x的值,使2x2+1=x-λ,
即方程2x2-x+λ+1=0有且只有一个解,
∴△=1-8(λ+1)=0,解得λ=-$\frac{7}{8}$,
故选:C.
点评 本题考查了函数的零点,函数的单调性,函数的奇偶性,只要基础牢固,问题容易解决,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 72 | B. | 78 | C. | 66 | D. | 62 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com