精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数存在极值点,求实数b的取值范围;
(2)求函数的单调区间;
(3)当时,令(),()为曲线y=上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由。

(1)
(2)当时,,函数的单调递增区间为
时,,函数的单调递减区间为,单调递增区间为
(3)对任意给定的正实数,曲线上总存在两点,使得是以O为直角顶点的直角三角形,且斜边中点在y轴上

解析试题分析:解:(Ⅰ),若存在极值点,则有两个不相等实数根。所以,              2分
解得               3分
(Ⅱ)               4分
时,,函数的单调递增区间为;       5分
时,,函数的单调递减区间为,单调递增区间为
7分
(Ⅲ) 当时,假设使得是以O为直角顶点的直角三角形,且斜边中点在y轴上。则。     8分
不妨设。故,则该方程有解          9分
时,则,代入方程,而此方程无实数解;              10分
时,;         11分
时,则,代入方程,               12分
,则上恒成立。上单调递增,从而,则值域为
时,方程有解,即方程有解。     13分
综上所述,对任意给定的正实数,曲线上总存在两点,使得是以O为直角顶点的直角三角形,且斜边中点在y轴上。           14分
考点:导数的运用
点评:主要是考查了导数在研究函数单调性以及函数与方程思想的综合运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.
(1)求函数的单调区间;
(2)若当恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求在图象与轴交点处的切线方程;
(2)若在(1,2)上为单调函数,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数
(1)若,求实数b,c的值;
(2)若
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,记的导函数的导函数

的导函数,…,的导函数.
(1)求
(2)用n表示
(3)设,是否存在使最大?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


设命题p:函数的定义域为R;命题q:不等式对任意恒成立.
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题且“p且q”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在实数集上的函数,其导函数记为
(1)设函数,求的极大值与极小值;
(2)试求关于的方程在区间上的实数根的个数。

查看答案和解析>>

同步练习册答案