精英家教网 > 高中数学 > 题目详情
20.已知曲线y=$\frac{1}{x}$和y=x2它们交于点P,过P点的两条切线与x轴分别交于A,B两点.求△ABP的面积.

分析 联立两曲线方程求出交点坐标P(1,1),把x=1分别代入两曲线的导函数中求两切线的斜率,从而写出过点P的两条切线方程,然后根据与x轴交点坐标的求法分别求出A、B的坐标可确定出三角形的底与高,利用三角形的面积公式即可求出.

解答 解:联立两曲线方程得$\left\{\begin{array}{l}y=\frac{1}{x}\\ y={x}^{2}\end{array}\right.$,
解得$\left\{\begin{array}{l}x=1\\ y=1\end{array}\right.$,
所以切点P的坐标为(1,1),
求出两曲线的导函数为y′=-$\frac{1}{{x}^{2}}$和y′=2x,把x=1分别代入两个导函数得到过p点切线的斜率分别为:k1=-1,k2=2×1=2,
则两曲线在P点的切线方程分别为:y-1=-1(x-1)即x+y-2=0;y-1=2(x-1)即2x-y-1=0
因为A、B是两切线与x轴的交点,所以令y=0,得到A(2,0),B($\frac{1}{2}$,0),
则s△ABP=$\frac{1}{2}$×|2-$\frac{1}{2}$|×1=$\frac{3}{4}$.

点评 此题是把函数与方程综合在一起的题型,要求学生会利用导数求切线的斜率,以及会根据一点和斜率写出直线的方程,会求直线与x轴的截距.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.正项数列{an}中,Sn为其前n项和,且Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$)
(1)求a1和a2的值;    
(2)求数列{an}的通项公式;
(3)求证:$\frac{1}{{2{S_1}}}+\frac{1}{{3{S_2}}}+…+\frac{1}{{({n+1}){S_n}}}$<2(1-$\frac{1}{{{S_{n+1}}}}$),(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinθ=$\frac{3}{5}$,θ∈($\frac{π}{2}$,π).求值:①sin($\frac{π}{2}$+θ);②tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若二次函数f(x)=x2+7x+3a没有不动点,则实数a的取值范围是a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=3x的反函数是(  )
A.y=x3B.y=$\root{3}{x}$C.y=log3xD.y=($\frac{1}{3}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z满足$\frac{z}{1+2i}$=|3-4i|,则z的共轭复数$\overline{z}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴的一个端点与两个焦点的连线构成面积为2的等腰直角三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)的直线l与椭圆C相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间(-1,1)内任取两个实数,则这两个实数的绝对值之和小于1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.四边形OABC中,$\overrightarrow{CB}=\frac{1}{2}\overrightarrow{OA}$,若$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OC}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$\frac{\overrightarrow a}{2}-\overrightarrow b$C.$\overrightarrow b+\frac{\overrightarrow a}{2}$D.$\overrightarrow b-\frac{1}{2}\overrightarrow a$

查看答案和解析>>

同步练习册答案