分析 由正数x,y满足x+2y=2xy,得到$\frac{1}{2y}$+$\frac{1}{x}$=1,再利用基本不等式即可求出.
解答 解:由正数x,y满足x+2y=2xy,∴$\frac{1}{2y}$+$\frac{1}{x}$=1,
∴3x+4y=(3x+4y)($\frac{1}{2y}$+$\frac{1}{x}$)=3+2+$\frac{3x}{2y}$+$\frac{4y}{x}$≥5+2$\sqrt{\frac{3x}{2y}•\frac{4y}{x}}$=5+2$\sqrt{6}$,
当且仅当x=$\frac{3+\sqrt{6}}{3}$,y=$\frac{2+\sqrt{6}}{4}$时取等号,
故3x+4y的最小值为:$5+2\sqrt{6}$,
故答案为:5+2$\sqrt{6}$
点评 本题考查了“乘1法”与基本不等式的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{12}$ | B. | x=-$\frac{π}{12}$ | C. | x=$\frac{π}{6}$ | D. | x=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{13}}}{5}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\frac{{2\sqrt{39}}}{9}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com