精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥中,.

1)求证:平面平面

2)若点是线段上靠近的三等分点,求直线与平面所成角的正弦值.

【答案】1)证明见解析;(21.

【解析】

1)在中,利用余弦定理,可求得,用勾股定理,可证得,继而可证平面,即得证;

2))以为坐标原点,过点作平行于的直线为轴,所在直线为轴,过点作垂直于平面的直线为轴,建立空间直角坐标系,分别求解直线的方向向量,平面的法向量,利用线面角的向量公式,即得解

1)不妨设,则

因为,由余弦定理,,解得

,则

,则

因为,故平面

因为平面,故平面平面.

2)以为坐标原点,过点作平行于的直线为轴,所在直线为轴,过点作垂直于平面的直线为轴,建立如图所示的空间直角坐标系,

,由(1)可知

点坐标为,由

解得,即点坐标为

设平面的法向量为,所以

所以,令,得

,故,故

设直线与平面所成角为,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求百度外卖公司的“骑手”一日工资(单位:元)与送餐单数的函数关系;

(Ⅱ)若将频率视为概率,回答下列问题:

①记百度外卖的“骑手”日工资为(单位:元),求的分布列和数学期望;

②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新型冠状病毒疫情期间,商业活动受到很大影响某小型零售连锁店总部统计了本地区50家加盟店2月份的零售情况,统计数据如图所示.据估计,平均销售收入比去年同期下降40%,则去年2月份这50家加盟店的平均销售收入约为(

A.6.6万元B.3.96万元C.9.9万元D.7.92万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设你有一笔资金,现有三种投资方案,这三种方案的回报如下:

方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.

现打算投资10天,三种投资方案的总收益分别为,则( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点S( -20) ,T(20),动点P为平面上一个动点,且直线SPTP的斜率之积为.

1)求动点P的轨迹E的方程;

2)设点B为轨迹Ey轴正半轴的交点,是否存在直线l,使得l交轨迹EMN两点,且F(10)恰是△BMN的垂心?若存在,求l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求证:当时,

(Ⅱ)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线y=fx)在点(1f1))处的切线与两坐标轴围成的三角形的面积;

2)若fx≥1,求a的取值范围.

查看答案和解析>>

同步练习册答案