【题目】证明
(1)求证: + <2
(2)已知a>0,b>0且a+b>2,求证: , 中至少有一个小于2.
【答案】
(1)证明:因为 + 和2 都是正数,所以为了证明 + <2 ,
只要证 ( + )2<(2 )2
只需证:10+2 <20,
即证:2 <10,
即证: <5,
即证:21<25,
因为21<25显然成立,所以原不等式成立.
(2)证明:假设: , 都不小于2,则 ≥2, ≥2,
∵a>0,b>0,
∴1+b≥2a,1+a≥2b,
∴1+b+1+a≥2(a+b)
即 a+b≤2
这与已知a+b>2矛盾,故假设不成立,从而原结论成立.
【解析】(1)利用了分析法,和两边平方法,(2)利用了反证法,假设: , 都不小于2,则 ≥2, ≥2,推得即a+b≤2,这与已知a+b>2矛盾,故假设不成立,从而原结论成立.
【考点精析】认真审题,首先需要了解不等式的证明(不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等).
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC.
(2)求证:平面MOC⊥平面VAB.
(3)求二面角C﹣VB﹣A的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有4名男生,3名女生排成一排:
(1)从中选出3人排成一排,有多少种排法?
(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法?
(3)要求女生必须站在一起,则有多少种不同的排法?
(4)若3名女生互不相邻,则有多少种不同的排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自然数按如图的规律排列:则上起第2007行左起2008列的数为( )
A.20072
B.20082
C.2006×2007
D.2007×2008
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VA B⊥平面 ABC,AC=BC,O,M分别为A B,VA的中点.
(1)求证:VB∥平面 M OC;
(2)求证:平面MOC⊥平面VAB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将自然数按如下规则“放置”在平面直角坐标系中,使其满足条件:①每个自然数“放置”在一个“整点”(横纵坐标均为整数的点)上;②0在原点,1在(0,1)点,2在(1,1)点,3在(1,0)点,4在(1,﹣1)点,5在(0,﹣1)点,…,即所有自然数按顺时针“缠绕”在以“0”为中心的“桩”上,则放置数字(2n+1)2 , n∈N*的整点坐标是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位: ),得到下面的频数分布表:
(1)用分层抽样的方法从身高在和的女生中共抽取6人,则身高在的女生应抽取几人?
(2)在(1)中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com