精英家教网 > 高中数学 > 题目详情

【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位 ),得到下面的频数分布表:

1用分层抽样的方法从身高在的女生中共抽取6人,则身高在的女生应抽取几人

21中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.

【答案】1;(2

【解析】试题分析:

(1)由题意,结合分层抽样的概念可得身高在内的女生应该抽取.

(2)列出所有可能的事件,结合古典概型计算公式可得2人身高都在内的概率.

试题解析:

1身高在内的女生应该抽取.

2)在(1中抽取的6名女生中,有4人身高在2人身高在

记身高在中的4人分別为身高在中的2人分别为,从这6人中随机抽取2人,基本事件包括

共有15个基本事件,

其中2人身高在内的情况有6,

2人身高都在内的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】证明
(1)求证: + <2
(2)已知a>0,b>0且a+b>2,求证: 中至少有一个小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1﹣50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,如表是甲、乙两人分别抽取的样本数据: 甲抽取的样本数据

编号

2

7

12

17

22

27

32

37

42

47

性别

投篮成 绩

90

60

75

80

83

85

75

80

70

60

乙抽取的样本数据

编号

1

8

10

20

23

28

33

35

43

48

性别

投篮成 绩

95

85

85

70

70

80

60

65

70

60

(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为X,求X的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?

优秀

非优秀

合计

合计

10

(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ= . (Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣kx且f(x)在区间(2,+∞)上为增函数.
(1)求k的取值范围;
(2)若函数f(x)与g(x)的图象有三个不同的交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为2的正方形边的中点,将分别沿折起,使得点与点重合,记为点,得到三棱锥

(Ⅰ)求证:平面平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数,对任意,均有恒成立.下列说法:

的周期为

②若为常数)的图像关于直线对称,则

③若,则必有

④已知定义在上的函数对任意均有成立,且当时, 又函数为常数),若存在使得成立,则的取值范围是.其中说法正确的是____.(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx﹣2cos2x. (Ⅰ)求f( );
(Ⅱ)求f(x)的最大值和单调递增区间.

查看答案和解析>>

同步练习册答案