精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,曲线C的极坐标方程为ρ= . (Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)过点P(0,2)作斜率为1直线l与曲线C交于A,B两点,试求 + 的值.

【答案】解:(Ⅰ)∵ρ= ,∴ρ2cos2θ=ρsinθ, ∴曲线C的直角坐标方程是x2=y,即y=x2
(Ⅱ)直线l的参数方程为 (t为参数).
(t为参数)代入y=x2得t2 ﹣4=0.
∴t1+t2= ,t1t2=﹣4.
+ = = = =
【解析】(I)对极坐标方程两边同乘ρ,利用极坐标与直角坐标的对应关系得出直角坐标方程;(II)求出直线l的参数方程,代入曲线C的普通方程,利用参数的几何意义求出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自然数按如图的规律排列:则上起第2007行左起2008列的数为(

A.20072
B.20082
C.2006×2007
D.2007×2008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n

1

2

3

4

5

成绩xn

70

76

72

70

72


(1)求第6位同学的成绩x6 , 及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和直线 ,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x. 给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正确的有(
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为倡导全体学生为特困学生捐款,举行一元钱,一片心,诚信用水活动学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱现统计了连续5天的售出和收益情况,如下表:

售出水量x(单位:箱)

7

6

6

5

6

收益y(单位:元)

165

142

148

125

150

(Ⅰ) 若xy成线性相关,则某天售出8箱水时,预计收益为多少元?

(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.

⑴在学生甲获得奖学金条件下,求他获得一等奖学金的概率;

⑵已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X 的分布列及数学期望

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位 ),得到下面的频数分布表:

1用分层抽样的方法从身高在的女生中共抽取6人,则身高在的女生应抽取几人

21中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)设△AOB的外接圆圆心为E.
(1)若⊙E与直线CD相切,求实数a的值;
(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

查看答案和解析>>

同步练习册答案