精英家教网 > 高中数学 > 题目详情
已知动点P到直线的距离比它到点F的距离大.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l对称,求实数的取值范围.
(1)(2)
(Ⅰ)据题意可知,点P到直线的距离等于它到点F的距离,所以点P的轨迹是以点F为交点,直线为准线的抛物线.                          
因为,抛物线开口向上,故点P的轨迹方程是.                      
(Ⅱ)若,则直线l为x轴,此时抛物线与直线l相切.                
,设与直线l垂直的直线为,代入,得(*)
设直线与抛物线的交点为,则
从而.                                     
假设点A,B关于直线对称,则AB的中点l上,
所以,即.                           
由于方程(*)有两个不相等的实根,则.所以,整理得,即.                       
恒成立,所以,即.
所以当时,抛物线上存在两点关于直线对称.                            
故当抛物线上不存在两点关于直线l对称时,实数的取值范围是
.                                                                 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如下图,已知△OFQ的面积为S,且·=1,

(1)若S的范围为<S<2,求向量的夹角θ的取值范围;
(2)设||=c(c≥2),S=c,若以O为中心,F为焦点的椭圆经过点Q,当||取得最小值时,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面内称横坐标为整数的点为“次整点”.过函数图象上任意两个次整点作直线,则倾斜角大于45°的直线条数为.
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。  (I)求此双曲线的方程;  (II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设圆过点P(0,2), 且在轴上截得的弦RG的长为4.
(1)求圆心的轨迹E的方程;                                                                                                        
(2)过点(0,1),作轨迹的两条互相垂直的弦,设 的中点分别为,试判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与双曲线共焦点,且过(
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面中,的两个顶点分别的坐标为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面中,的两个顶点的坐标分别为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)抛物线的顶点在原点,焦点在射线x-y+1=0
(1)求抛物线的标准方程
(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值

查看答案和解析>>

同步练习册答案