精英家教网 > 高中数学 > 题目详情
已知椭圆与双曲线共焦点,且过(
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程;
(1)
(2)y=()
(1)依题意得,将双曲线方程标准化为,则c=1



(2) 依题意,设斜率为2的弦所在直线的方程为y=2x+b,弦的中点坐标为(x,y),则
y=2x+b
   得9x2+8xb+2b2—2="0   "
   两式消掉b得y=
令△=0,64b2-36(2b2-2)=0,即b=±3,所以斜率为2,且与椭圆相切的直线方程为y=2x±3
即当x= 时斜率为2的直线与椭圆相切.
所以平行弦得中点轨迹方程为:y=()
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分。
已知双曲线C的中心是原点,右焦点为F,一条渐近线m:,设过点A的直线l的方向向量
(1)求双曲线C的方程;
(2)若过原点的直线,且al的距离为,求K的值;
(3)证明:当时,在双曲线C的右支上不存在点Q,使之到直线l的距离为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O为坐标原点,直线x轴于点C, ,动点到直线的距离是它到点D的距离的2倍 
(I)求点的轨迹方程;
(II)设点K为点的轨迹与x轴正半轴的交点,直线交点的轨迹于两点(与点K均不重合),且满足 求直线EF在X轴上的截距;
(Ⅲ)在(II)的条件下,动点满足,求直线的斜率的取值范围 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(ab>0)的曲线大致是      (   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(22) (本小题满分12分)(注意:在试题卷上作答无效)如图,已知抛物线与圆相交于A、B、C、D四个点。
(Ⅰ)求r的取值范围
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P到直线的距离比它到点F的距离大.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l对称,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中

(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题








查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动圆与圆(x-2)2+y2=1外切,又与直线x+1=0相切,则动圆圆心的轨迹方程是
(  )
A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x

查看答案和解析>>

同步练习册答案