精英家教网 > 高中数学 > 题目详情







(Ⅰ)(Ⅱ)(Ⅲ)
(1)解据已知,所求曲线是椭圆,长轴
,所以椭圆的方程为.                          ……4分
(2)设,由  ,设

.联立,得
为上述方程的两根,代入
,所求直线                                    
(3)椭圆的右准线为,设点到右准线的距离为,则
,此时的最小值为点到右准线的距离,
,此时点的坐标为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆方程为,过原点且倾斜角为的两条直线分别交椭圆于A、C和B、D两点.(1)用表示四边形ABCD的面积S;(2)当时,求S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆与双曲线共焦点,且过(
(1)求椭圆的标准方程.
(2)求斜率为2的一组平行弦的中点轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面中,的两个顶点的坐标分别为,平面内两点同时满足下列条件:
;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中轨迹交于两点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,过Aa,0),
B(0,-b),两点的直线到原点的距离是
⑴求椭圆的方程 ; 
⑵已知直线ykx+1(k0)交椭圆于不同的两点EF,且EF都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)抛物线的顶点在原点,焦点在射线x-y+1=0
(1)求抛物线的标准方程
(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线和椭圆有相同的焦点,两曲线在第一象限内的交点为,椭圆轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若
(1)求椭圆的离心率;
(2)求双曲线和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于两点A、B.
(1)若|AB|=,求直线l的方程;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆上一点,它到左准线的距离为,求点到右焦点的距离.

查看答案和解析>>

同步练习册答案