精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率,过Aa,0),
B(0,-b),两点的直线到原点的距离是
⑴求椭圆的方程 ; 
⑵已知直线ykx+1(k0)交椭圆于不同的两点EF,且EF都在以B为圆心的圆上,求k的值.

(1)(2)
⑴∵∴过AB的直线方程为
 ∴ 
又∵
     即
       即  
∴椭圆方程为
⑵由,得 设
 又∵EF都在以B圆心的圆上
∴|BE|=|BF|,即 ∴
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点F1(0,-2),对应的准线方程为y=-,且离心率e满足:,e,成等比数列.
(1)求椭圆方程;
(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(22) (本小题满分12分)(注意:在试题卷上作答无效)如图,已知抛物线与圆相交于A、B、C、D四个点。
(Ⅰ)求r的取值范围
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中

(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题








查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)若椭圆的离心率等于,抛物线 的焦点在椭圆的顶点上。(Ⅰ)求抛物线的方程;
(Ⅱ)求的直线与抛物线两点,又过作抛物线的切线,当时,求直线的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆上异于长轴端点的任一点,是椭圆的两个焦点,若.求证:椭圆的离心率

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.方程表示斜率为1,在轴上的截距为2的直线
B.三个顶点的坐标是,中线的方程是
C.到轴距离为5的点的轨迹方程是
D.与坐标轴等距离的点的轨迹方程是

查看答案和解析>>

同步练习册答案