精英家教网 > 高中数学 > 题目详情
设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程.
椭圆的方程为
,∴       
得              
∴设椭圆的方程为

是椭圆上任意一点,则
  (
,则当时,
由已知有,得
,则当时,
由已知有,得(舍去).
综上所述,.            
所以,椭圆的方程为.     
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知动圆过定点,且和定直线相切.(Ⅰ)求动圆圆心的轨迹的方程;(Ⅱ)已知点,过点作直线与曲线交于两点,若为实数),证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的一组斜率为2的平行弦中点的轨迹是(     )
A.椭圆B.圆C.双曲线D.射线(不含端点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线 与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得?
② 是否存在这样的实数,使A、B两点关于直线对称?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以O为原点,所在直线为轴,建立如 所示的坐标系。设,点F的坐标为,点G的坐标为
(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;
(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;
(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,过Aa,0),
B(0,-b),两点的直线到原点的距离是
⑴求椭圆的方程 ; 
⑵已知直线ykx+1(k0)交椭圆于不同的两点EF,且EF都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,线段AB与CD互相垂直平分于点O,|AB|=2a(a>0),|CD|="2b" (b>0),动点P满足|PA|·|PB|=|PC|·|PD|.求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与双曲线方程为相交,如果定点为弦的中点,求该直线的方程。

查看答案和解析>>

同步练习册答案