精英家教网 > 高中数学 > 题目详情
下列命题正确的是(  )
A.方程表示斜率为1,在轴上的截距为2的直线
B.三个顶点的坐标是,中线的方程是
C.到轴距离为5的点的轨迹方程是
D.与坐标轴等距离的点的轨迹方程是
选项 A.去掉(0,2),B.中线方程为,C方程为,故选D。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点,直线是它的一条准线,分别是椭圆的上、下两个顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设以原点为顶点,为焦点的抛物线为,若过点的直线与相交于不同的两点、,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,过Aa,0),
B(0,-b),两点的直线到原点的距离是
⑴求椭圆的方程 ; 
⑵已知直线ykx+1(k0)交椭圆于不同的两点EF,且EF都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线和椭圆有相同的焦点,两曲线在第一象限内的交点为,椭圆轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若
(1)求椭圆的离心率;
(2)求双曲线和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,线段AB与CD互相垂直平分于点O,|AB|=2a(a>0),|CD|="2b" (b>0),动点P满足|PA|·|PB|=|PC|·|PD|.求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x的焦点为F,过点F的直线l与C相交于两点A、B.
(1)若|AB|=,求直线l的方程;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是(  )
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与曲线有两个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线交双曲线及其渐近线于四点,求证:

查看答案和解析>>

同步练习册答案