精英家教网 > 高中数学 > 题目详情
已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2
3

(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
分析:(I)根据椭圆的特征可得当点P在点(0,b)时,△APB面积的最大,结合题中的条件可得a、b与c的关系进而得到答案.
(II)设点P的坐标为(x0,y0),由题意可设直线AP的方程为y=k(x+2),可得点D与BD中点E的坐标,联立直线与椭圆的方程得(3+4k2)x2+16k2x+16k2-12=0,进而表示出点P的坐标,结合点F坐标为(1,0),再写出直线PF的方程,根据点E到直线PF的距离等于直径BD的一半,进而得到答案.
解答:解:(Ⅰ)由题意可设椭圆C的方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,F(c,0).
由题意知
1
2
• 2a•b=2
3
a=2
a2=b2+c2 

解得b=
3
,c=1.
精英家教网故椭圆C的方程为
x2
4
+
y2
3
=1
,离心率为
1
2

(Ⅱ)以BD为直径的圆与直线PF相切.
证明如下:由题意可设直线AP的方程为y=k(x+2)(k≠0).
则点D坐标为(2,4k),BD中点E的坐标为(2,2k).
y=k(x+2)
x2
4
+
y2
3
=1
得(3+4k2)x2+16k2x+16k2-12=0.
设点P的坐标为(x0,y0),则-2x0=
16k2-12
3+4k2

所以x0=
6-8k2
3+4k2
y0=k(x0+2)=
12k
3+4k2

因为点F坐标为(1,0),
k=±
1
2
时,点P的坐标为(1,±
3
2
)
,点D的坐标为(2,±2).
直线PF⊥x轴,此时以BD为直径的圆(x-2)2+(y±1)2=1与直线PF相切.
k≠±
1
2
时,则直线PF的斜率kPF=
y0
x0-1
=
4k
1-4k2

所以直线PF的方程为y=
4k
1-4k2
(x-1)

点E到直线PF的距离d=
|
8k
1-4k2
-2k-
4k
1-4k2
|
16k2
(1-4k2)2
+1
=
|
2k+8k3
1-4k2
|
1+4k2
|1-4k2|
=2|k|

又因为|BD|=4|k|,所以d=
1
2
|BD|

故以BD为直径的圆与直线PF相切.
综上得,当直线AP绕点A转动时,以BD为直径的圆与直线PF相切.
点评:解决此类问题的关键是熟练掌握椭圆中有关数值的关系,以及椭圆与直线的位置关系、圆与直线的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,以M(-1,0)为圆心的圆与直线x-
3
y-3=0
相切.
(1)求圆M的方程;
(2)已知A(-2,0)、B(2,0),圆内动点P满足|PA|•|PB|=|PO|2,求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系下,已知A(2,0),B(0,2),C(cos2x,sin2x),(0<x<
π
2
),f(x)=
AB
AC

(Ⅰ)求f(x)的表达式;
(Ⅱ)求f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,0),B(0,1)为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上的两点,P(x,y)为椭圆C上的动点,O为坐标原点.
( I)求椭圆C的方程;
( II)将|OP|表示为x的函数,并求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(2,0),b=(
12
,-2),则a•b=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0)、B(2,0),且△ABC的周长等于10,则顶点C的轨迹方程为
x2
9
+
y2
5
=1  (y≠0)
x2
9
+
y2
5
=1  (y≠0)

查看答案和解析>>

同步练习册答案