精英家教网 > 高中数学 > 题目详情
12.已知tanα=2,那么tan(α-$\frac{π}{3}$)=$\frac{5\sqrt{3}-8}{11}$,sin2α=$\frac{4}{5}$.

分析 由已知及两角和与差的正切函数公式,二倍角公式即可求值.

解答 解:∵tanα=2,
∴tan(α-$\frac{π}{3}$)=$\frac{tanα-tan\frac{π}{3}}{1+tanαtan\frac{π}{3}}$=$\frac{2-\sqrt{3}}{1+2×\sqrt{3}}$=$\frac{5\sqrt{3}-8}{11}$,
sin2α=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$.
故答案为:$\frac{5\sqrt{3}-8}{11}$,$\frac{4}{5}$.

点评 本题主要考查了两角和与差的正切函数公式,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=xlnx-ax2
(1)若曲线y=f(x)过点P(1,-1),求曲线在点P处的切线方程;
(2)若f(x)在(0,+∞)上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A、B两种规格的金属板,每张面积分别为2m2、3m2,用A种金属板可造甲产品3个,乙产品5个,用B种金属板可造甲、乙产品各6个,设A、B两种金属板分别取x,y张时,能完成计划并能使总用料面积最省,则(x,y)=(3,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解方程:5x2+7x-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列结论中错误的是(  )
A.1.72.5<1.73B.log0.31.8<log0.31.7
C.$\frac{3}{2}$<log23D.$\frac{3}{2}$>log23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=xcosx+3(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则(  )
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l:y=-x+a与圆C:x2+y2=2相交于相异两点M、N,点O是坐标原点,且满足|$\overrightarrow{OM}$+$\overrightarrow{ON}$|>|$\overrightarrow{OM}$-$\overrightarrow{ON}$|,则实数a的取值范围是(  )
A.(-2,-$\sqrt{2}$)∪($\sqrt{2}$,2)B.(-$\sqrt{2}$,$\sqrt{2}$0C.($\sqrt{2}$,-1)∪(1,$\sqrt{2}$)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)及其导数′(x),若存在x0,使得f(x)=f′(x),则称x0是f(x)的一个“巧值点”,下列函数中,有“巧值点”的是(  )
①f(x)=x2
②f(x)=e-x
③f(x)=lnx,
④f(x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.
A.①③⑤B.①③④C.①②③④D.①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是(  )
A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3

查看答案和解析>>

同步练习册答案