精英家教网 > 高中数学 > 题目详情
2.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是(  )
A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3

分析 根据题目给出的散点图,先判断是正相关还是负相关,然后根据点的集中程度分析相关系数的大小.

解答 解:由给出的四组数据的散点图可以看出,
图1和图3是正相关,相关系数大于0,
图2和图4是负相关,相关系数小于0,
图1和图2的点相对更加集中,所以相关性要强,所以r1接近于1,r2接近于-1,
由此可得r2<r4<r3<r1
故选:A

点评 本题考查了两个变量的线性相关,考查了相关系数,散点分布在左下角至右上角,说明两个变量正相关;分布在左上角至右下角,说明两个变量负相关,散点越集中在一条直线附近,相关系数越接近于1(或-1),此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知tanα=2,那么tan(α-$\frac{π}{3}$)=$\frac{5\sqrt{3}-8}{11}$,sin2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知θ为第二象限角,sinθ=$\frac{\sqrt{3}}{2}$,则tanθ等于(  )
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x+z,3),$\overrightarrow{b}$=(2,y-z),且$\overrightarrow{a}$⊥$\overrightarrow{b}$.若x,y满足不等式$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2}\end{array}\right.$,则z的取值范围为(  )
A.[-6,4]B.[-4,6]C.[0,4]D.[0,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知ω>0,函数f(x)=cos($\frac{π}{4}$-ωx)在($\frac{π}{2}$,π)上单调递减,则ω的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“10a>10b”是“lga>lgb”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,复数z=$\frac{i}{1+\sqrt{3}?i}$,则复数$\overline{z}$=(  )
A.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$iB.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iC.$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$iD.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数$f(x)=({1+\frac{1}{tanax}}){sin^2}ax-2sin({ax+\frac{π}{4}})sin({ax-\frac{π}{4}})$(a>0)的图象与直线y=m相切,相邻切点之间的距离为$\frac{π}{2}$.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,$\frac{π}{2}$],求点A的坐标.

查看答案和解析>>

同步练习册答案