【题目】已知定点
,横坐标不小于
的动点在
轴上的射影为
,若
.
(1)求动点
的轨迹
的方程;
(2)若点
不在直
线上,并且直线
与曲线
相交于
两个不同点.问是否存在常数
使得当
的值变化时,直线
斜率之和是一个定值.若存在,求出
的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知圆O;x2+y2=4,F1(-1,0),F2(1,0),点D圆O上一动点,2
=
,点C在直线EF1上,且
=0,记点C的轨迹为曲线W.
(1)求曲线W的方程;
(2)已知N(4,0),过点N作直线l与曲线W交于A,B不同两点,线段AB的中垂线为l',线段AB的中点为Q点,记P与y轴的交点为M,求|MQ|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
过定点
,且和直线
相切,动圆圆心
形成的轨迹是曲线
,过点
的直线与曲线
交于
两个不同的点.
(1)求曲线
的方程;
(2)在曲线
上是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出
点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区为了调查居民的生活水平,随机从小区住户中抽取
个家庭,得到数据如下:
家庭编号 | 1 | 2 | 3 | 4 | 5 | 6 |
月收入x(千元) | 20 | 30 | 35 | 40 | 48 | 55 |
月支出y(千元) | 4 | 5 | 6 | 8 | 8 | 11 |
参考公式:回归直线的方程是:
,其中,
.
(1)据题中数据,求月支出
(千元)关于月收入
(千元)的线性回归方程(保留一位小数);
(2)从这
个家庭中随机抽取
个,求月支出都少于
万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应党中央号召,学校以“我们都是追梦人”为主题举行知识竞赛。现有10道题,其中6道甲类题,4道乙类题,王同学从中任取3道题解答.
(Ⅰ)求王同学至少取到2道乙类题的概率;
(Ⅱ)如果王同学答对每道甲类题的概率都是
,答对每道乙类题的概率都是
,且各题答对与否相互独立,已知王同学恰好选中2道甲类题,1道乙类题,用
表示王同学答对题的个数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在直角梯形
中,
为
的中点,四边形
为正方形,将
沿
折起,使点
到达点
,如图(2),
为
的中点,且
,点
为线段
上的一点.
![]()
(1)证明:
;
(2)当
与
夹角最小时,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com