【题目】某小区为了调查居民的生活水平,随机从小区住户中抽取个家庭,得到数据如下:
家庭编号 | 1 | 2 | 3 | 4 | 5 | 6 |
月收入x(千元) | 20 | 30 | 35 | 40 | 48 | 55 |
月支出y(千元) | 4 | 5 | 6 | 8 | 8 | 11 |
参考公式:回归直线的方程是:,其中, .
(1)据题中数据,求月支出(千元)关于月收入(千元)的线性回归方程(保留一位小数);
(2)从这个家庭中随机抽取个,求月支出都少于万元的概率.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线过点,其参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线与相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出函数如下表,则f〔g(x)〕的值域为( )
x | 1 | 2 | 3 | 4 |
g(x) | 1 | 1 | 3 | 3 |
x | 1 | 2 | 3 | 4 |
f(x) | 4 | 3 | 2 | 1 |
A. {4,2} B. {1,3} C. {1,2,3,4} D. 以上情况都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果存在函数(为常数),使得对函数定义域内任意都有成立,那么称为函数的一个“线性覆盖函数”.给出如下四个结论:
①函数存在“线性覆盖函数”;
②对于给定的函数,其“线性覆盖函数”可能不存在,也可能有无数个;
③为函数的一个“线性覆盖函数”;
④若为函数的一个“线性覆盖函数”,则
其中所有正确结论的序号是___________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分别为CD、PB的中点.
(1)求证:EF⊥平面PAB;
(2)设,求直线AC与平面AEF所成角θ的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点任作一直线交抛物线于两点,过两点分别作抛物线的切线.
(Ⅰ)记的交点的轨迹为,求的方程;
(Ⅱ)设与直线交于点(异于点),且,.问是否为定值?若为定值,请求出定值.若不为定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com