科目:高中数学 来源:2013-2014学年福建四地六校高三上学期第二次月考理科数学试卷(解析版) 题型:解答题
已知函数
的导函数是
,
在
处取得极值,且
.
(Ⅰ)求
的极大值和极小值;
(Ⅱ)记
在闭区间
上的最大值为
,若对任意的![]()
总有
成立,求
的取值范围;
(Ⅲ)设
是曲线
上的任意一点.当
时,求直线OM斜率的最小值,据此判断
与
的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省南通市通州区高三4月模拟数学试卷(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年北京市顺义区高三年级第二次统练文科数学试卷(解析版) 题型:解答题
已知函数
,
,其中
为常数,
,函数
的图象与坐标轴交点处的切线为
,函数
的图象与直线
交点处的切线为
,且
。
(Ⅰ)若对任意的
,不等式
成立,求实数
的取值范围.
(Ⅱ)对于函数
和
公共定义域内的任意实数
。我们把
的值称为两函数在
处的偏差。求证:函数
和
在其公共定义域的所有偏差都大于2.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省漳州市高考模拟理科数学试卷(解析版) 题型:解答题
已知函数
的导函数是
,
在
处取得极值,且
,
(Ⅰ)求
的极大值和极小值;
(Ⅱ)记
在闭区间
上的最大值为
,若对任意的![]()
总有
成立,求
的取值范围;
(Ⅲ)设
是曲线
上的任意一点.当
时,求直线OM斜率的最
小值,据此判断
与
的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数
和函数
.
(1)若
,求函数
的单调区间;
(2)若方程
在
恒有唯一解,求实数
的取值范围;
(3)若对任意
,均存在
,使得
成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com