精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x2+x-1,g(x)=x3-ax(a<0),若对?x1∈[1,2],?x2∈[2,3],使得$\frac{f({x}_{1})+1}{{x}_{1}}$≤g(x2)成立,求实数a的取值范围.

分析 由于对?x1∈[1,2],?x2∈[2,3],使得$\frac{f({x}_{1})+1}{{x}_{1}}$≤g(x2)成立,等价于$\frac{f({x}_{1})+1}{{x}_{1}}$的最大值不大于g(x2)的最大值,即3≤8-2a,从而求解.

解答 解:∵函数f(x)=x2+x-1,
∴对?x1∈[1,2],$\frac{f({x}_{1})+1}{{x}_{1}}$=x1+1≤3,
∵g(x)=x3-ax(a<0),
∴g(x)单调递增
∴g(x2)>8-2a,
由于对任意x1∈[1,2],存在x2∈[2,3],使得$\frac{f({x}_{1})+1}{{x}_{1}}$≤g(x2)成立,等价于∈[2,3],使得$\frac{f({x}_{1})+1}{{x}_{1}}$的最大值不大于g(x2)的最大值,即3≤27-3a,
∴a≤8
故a的取值范围是(-∞,8]

点评 本题考查函数的恒成立问题,转化为最值比较大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,程序框图输出的结果是1320.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于函数f(x)=sin2x,下列说法错误的是①③④.
①f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是递增的;
②f(x)的图象关于原点对称;
③f(x)的最小正周期为2π;
④f(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=x2-bx-2.
(Ⅰ)当b=1,写出函数y=|f(x)|单调递增区间;
(Ⅱ)定义g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,若函数y=g(x)-$\frac{1}{2}$b在[-2,2]上有三个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在数列{an}中,a1=1,an+1=$\frac{{a}_{n}^{2}}{t{a}_{n}+2}$
(Ⅰ)若t=0,求数列{an}的通项公式;
(Ⅱ)若t=1,求证:$\frac{2}{3}≤\frac{2{a}_{1}}{{a}_{1}+2}+\frac{4{a}_{2}}{{a}_{2}+2}+\frac{6{a}_{3}}{{a}_{3}+2}+…+\frac{2n{a}_{n}}{{a}_{n}+2}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设球Γ的球心为O,平面α截Γ所得的圆为C1,经过球心O的平面β截Γ所得的圆为C2,若圆C1与C2的公共弦长为球Γ的半径,平面α与平面β的夹角为30°,O到平面α的距离为$\sqrt{3}$,则球Γ的表面积为64π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知边长为3的等边三角形ABC的三个顶点都在以O为球心的球面上,若三棱锥O-ABC的体积为$\frac{3\sqrt{3}}{4}$,则球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,已知所取的2瓶全在保质期内的概率为$\frac{351}{435}$,则至少取到1瓶已过保质期的概率为$\frac{28}{145}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.f(x)=$\frac{1}{2}$(sinx+cosx+|sinx-cosx|)的值域是(  )
A.[-1,1]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{{\sqrt{2}}}{2}$,1]D.[-1,$\frac{{\sqrt{2}}}{2}$]

查看答案和解析>>

同步练习册答案