精英家教网 > 高中数学 > 题目详情
若函数有极值点,且,则关于x的方程的不同实根个数是(  )
A.3B.4C.5D.6
A
,∴由题意知,的两个根.
不妨设,则上是增函数,在上是减函数(如图).
因为方程有两解,所以关于x的方程有两个根
又因为,由图象知有两个交点,只有一个交点(如图),
故原方程有3个解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率与日产量(件)之间近似地满足关系式(日产品废品率).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)
(1)将该车间日利润(千元)表示为日产量(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数()
(1)若在点处的切线方程为,求的解析式及单调递减区间;
(2)若上存在极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(Ⅰ)当时,
(1)若,求函数的单调区间;
(2)若关于的不等式在区间上有解,求的取值范围;
(Ⅱ)已知曲线在其图象上的两点)处的切线分别为.若直线平行,试探究点与点的关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+ax2-4(),是f(x)的导函数.
(1)当a=2时,对任意的的最小值;
(2)若存在使f(x0)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且在点
处的切线方程为.
(1)求的值;
(2)若函数在区间内有且仅有一个极值点,求的取值范围;  
(3)设为两曲线的交点,且两曲线在交点处的切线分别为.若取,试判断当直线轴围成等腰三角形时值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=(  )
A.﹣4B.﹣2C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数图象与直线相切,切点横坐标为.
(1)求函数的表达式和直线的方程;(2)求函数的单调区间;
(3)若不等式定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案