试题分析:
(1)把a=2带入f(x),对f(x)求导得单调性,得极值与[-1,1]区间端点对应的函数值进行比较得到最小值,对f(x)求导得到导函数,导函数为二次函数可以对称轴图像得到导函数在区间[-1,1]上的最小值,函数f(x)与f(x)的导函数最小值之和即为
的最小值.
(2)该问题为固定区间上的恒成立问题,只需要函数f(x)在区间
最小值大于0.关于函数f(x)的最值可以通过求导求单调性来得到在该区间上的最值,由于导函数是含参数的二次函数,故讨论需遵循开口,有无根,根的大小等步骤进行分类讨论确定原函数的单调性,得到最小值,进而得到a的取值范围.
试题解析:
(1)由题意知
令
2分
当
在[-1,1]上变化时,
随
的变化情况如下表:
x
| -1
| (-1,0)
| 0
| (0,1)
| 1
|
| -7
| -
| 0
| +
| 1
|
| -1
| ↓
| -4
| ↑
| -3
|
的最小值为
4分
的对称轴为
,且抛物线开口向下,
的最小值为
5分
的最小值为-11. 6分
(2)
.
①若
,
上单调递减,
又
9分
②若
当
从而
上单调递增,在
上单调递减,
. 12分
根据题意,
综上,
的取值范围是
14分
(或由
,用两种方法可解)