精英家教网 > 高中数学 > 题目详情

已知函数

(Ⅰ)当时,求曲线处的切线方程;

(Ⅱ)设函数,求函数的单调区间;

(Ⅲ)若在上存在一点,使得成立,求的取值范围.

 

【答案】

(Ⅰ)曲线在点处的切线方程为;(Ⅱ)当时,

所以上单调递减,在上单调递增;②当时,函数上单调递增.(Ⅲ)所求的范围是:

【解析】

试题分析:(Ⅰ)当时,求曲线处的切线方程,由导数的几何意义可得,对函数求导得,令,求出,得切线斜率,由点斜式可写出曲线处的切线方程;(Ⅱ)设函数,求函数的单调区间,求函数的单调区间,首先确定定义域,可通过单调性的定义,或求导确定单调区间,由于,含有对数函数,可通过求导来确定单调区间,对函数求导得,由此需对参数讨论,有范围判断导数的符号,从而得单调性;(Ⅲ)若在上存在一点,使得成立,既不等式有解,即在上存在一点,使得,即函数上的最小值小于零,结合(Ⅱ),分别讨论它的最小值情况,从而可求出的取值范围.

试题解析:(Ⅰ)的定义域为

时,

,切点,斜率

∴曲线在点处的切线方程为

(Ⅱ)

  

①当时,即时,在,在

所以上单调递减,在上单调递增;

②当,即时,在,所以,函数上单调递增.

(Ⅲ)在上存在一点,使得成立,即在上存在一点,使得,即函数上的最小值小于零.

由(Ⅱ)可知:①当,即时, 上单调递减,

所以的最小值为,由可得

因为,所以

②当,即时, 上单调递增,

所以最小值为,由可得

③当,即时,可得最小值为

因为,所以,

此时不存在使成立.

综上可得所求的范围是:

考点:函数与导数,函数单调性,存在解问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函数f(x)的周期T和单调递增区间;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=asinx+bcosx+c的图象上有一个最低点(
11π
6
,-1)

(Ⅰ)如果x=0时,y=-
3
2
,求a,b,c.
(Ⅱ)如果将图象上每个点的纵坐标不变,横坐标缩小到原来的
3
π
,然后将所得图象向左平移一个单位得到y=f(x)的图象,并且方程f(x)=3的所有正根依次成为一个公差为3的等差数列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则函数f(x)的解析式为(  )
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步练习册答案