精英家教网 > 高中数学 > 题目详情
4.解方程组$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=52}\\{xy+x+y=34}\end{array}\right.$.

分析 令x+y=a,xy=b,可得x2+y2=(x+y)2-2xy=a2-2b,原方程组变为:$\left\{\begin{array}{l}{{a}^{2}-2b=52}\\{a+b=34}\end{array}\right.$.由a+b=34可得:b=34-a,代入a2-2b=52,解得a,b,再利用一元二次方程的根与系数的关系即可得出.

解答 解:令x+y=a,xy=b,
则x2+y2=(x+y)2-2xy=a2-2b,
∴原方程组变为:$\left\{\begin{array}{l}{{a}^{2}-2b=52}\\{a+b=34}\end{array}\right.$,
由a+b=34可得:b=34-a,
代入a2-2b=52,化为a2+2a-120=0,
解得a=10,或a=-12.
∴$\left\{\begin{array}{l}{a=10}\\{b=24}\end{array}\right.$,或$\left\{\begin{array}{l}{a=-12}\\{b=46}\end{array}\right.$.
∴$\left\{\begin{array}{l}{x+y=10}\\{xy=24}\end{array}\right.$,或$\left\{\begin{array}{l}{x+y=-12}\\{xy=46}\end{array}\right.$,
由此可把x,y分别看做以下一元二次方程的两个实数根:
t2-10t+24=0,t2+12t-46=0,
分别解得t=4,6;t=-6±$\sqrt{82}$.
∴原方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,$\left\{\begin{array}{l}{x=6}\\{y=4}\end{array}\right.$,$\left\{\begin{array}{l}{x=-6+\sqrt{82}}\\{y=-6-\sqrt{82}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-6-\sqrt{82}}\\{y=-6+\sqrt{82}}\end{array}\right.$.

点评 本题考查了一元二次方程的根与系数的关系、方程组的解法、换元法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某种产品的广告费用支出x(万元)与销售额y(万元)之间的有如下的相应数据:
广告费用x12345
销售额y2030405050
(1)求产品销额y对广告费用x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)据此估计广告费用为6万元时的销售收入y(万元)的值.
(参考公式中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,其中$\overline{x},\overline{y}$表示的样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.利用计算机在区间(0,1)上产生随机数a,b,f(x)=x+$\frac{b}{x}$+2a在定义域{x∈R|x≠0}上存在零点的概率(  )
A.$\frac{1}{3}$B.$\frac{3}{7}$C.$\frac{5}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:
(1)5${\;}^{1-lo{g}_{0.2}3}$;
(2)log43•log92+log2$\root{4}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=-x2+(a-1)x+2在[-2,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设M是满足下列两个条件的函数f(x)的集合:
①f(x)的定义域是[-1,1];
②若x1,x2∈[-1,1],则|f(x1)-f(x2)|≤4|x1-x2|;
试问:定义在[-1,1]的函数g(x)=x2+2x-1是否属于集合M,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的偶函数f(x)在(-∞,0)上单调递减,若f(2a2+a+1)<f(3a2-2a+1),则a的取值范围是(-∞,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设α、β是方程x2-ax+b=0的两个实数根,试分析a>1且b>1是两根α、β均大于1的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以O为圆心的圆与直线x-$\sqrt{3}$y=2相切.
(1)求圆O的方程;
(2)设M(-2,0),N(2,0),过N的动直线l交圆O于A,B两点,求△AMB面积最大时直线l的方程.

查看答案和解析>>

同步练习册答案