某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)).
(1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);
(2)若在t=
处,S(t)取得最小值,求此时a的值及S(t)的最小值.
科目:高中数学 来源: 题型:解答题
已知函数
,其中
,
是自然对数的底数.
(1)求函数
的零点;
(2)若对任意
均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知
,且函数
在R上是单调函数,探究函数
的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,求函数
的单调区间;
(Ⅲ)当
时,函数
在
上的最大值为
,若存在
,使得
成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lnx,g(x)=
ax2+bx(a≠0),设函数f(x)的图象C1与函数g(x)的图象C2交于两点P、Q,过线段PQ的中点R作x轴垂线分别交C1、C2于点M、N,问是否存在点R,使C1在点M处的切线与C2在点N处的切线互相平行?若存在,求出点R的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-x3+ax2-4(a∈R).
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
,求f(x)在[-1,1]上的最小值;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)求函数
的极值;
(2)定义:若函数
在区间
上的取值范围为
,则称区间
为函数
的“域同区间”.试问函数
在
上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com