精英家教网 > 高中数学 > 题目详情
9.已知sinα=3cosα,则sinα•cosα的值为(  )
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{7}{15}$D.$\frac{7}{20}$

分析 由条件利用本题主要考查同角三角函数的基本关系,求得要求式子的值.

解答 解:∵sinα=3cosα,∴tanα=3,则sinα•cosα=$\frac{sinα•cosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{tanα}{{tan}^{2}α+1}$=$\frac{3}{10}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(Ⅰ)直线l的参数方程化为极坐标方程;
(Ⅱ)求直线l与曲线C交点的极坐标(其中ρ≥0,0≤θ≤2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把函数y=sin(4x+φ)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有的点向右平$\frac{π}{3}$个单位,所得图象关于y轴对称,则φ的一个可能值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,点M是以F为焦点的抛物线x2=8y上一点,若∠MFy=60°,则|FM|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各式中正确的是(  )
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{5}}$=-$\root{5}{x}$C.(-x)${\;}^{\frac{2}{3}}$=x${\;}^{\frac{2}{3}}$D.x${\;}^{\frac{2}{6}}$=x${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是(  )
A.(-∞,-1)B.(-∞,-1]C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{lg(x+2)}{x-1}$的定义域是(  )
A.(-2,1)B.[-2,1)∪(1,+∞)C.(-2,+∞)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.甲乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲乙下成和棋的概率为(  )
A.70%B.30%C.20%D.50%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设O为坐标原点,A(2,1),若点B(x,y)满足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤1}\\{\frac{1}{2}≤x≤1}\\{0≤y≤1}\end{array}\right.$,则$\overrightarrow{OA}•\overrightarrow{OB}$的最大值是$\sqrt{5}$.

查看答案和解析>>

同步练习册答案