精英家教网 > 高中数学 > 题目详情
下面是计算应纳税所得额的算法过程,其算法如下:
第一步 输入工资x(注x<=5000);
第二步 如果x<=800,那么y=0;如果800<x<=1300,那么y=0.05(x-800);
  否则 y=25+0.1(x-1300)
第三步 输出税款y,结束.
请写出该程序框图和程序.(注意:程序框图与程序必须对应)
考点:设计程序框图解决实际问题
专题:算法和程序框图
分析:分析:(1)根据第一步,我们可以开始后,应设计一个数据输入框,由第二步,我们可知我们需要设计一个分支嵌套结构,最后还要在结束前有一个数据输出框,根据已知中数据,易得到程序的框图;
(2)由(1)的框图,将框图中的输入、分支、输出转化为对应语句后,即可得到程序的语句.
解答: 解答:解:
(1)程序框图为:

(2)程序代码:INPUT x
IF x<=800 THEN
y=0
ELSE IF x>800 AND x<=1300 THEN 
y=0.05*(x-800)
ELSE 
y=25+0.1*(x-1300)
END IF
END IF
PRINT y
END
点评:本题考查的知识点是算法程序框图,伪代码,其中根据算法步骤画出程序框图,熟练掌握各种框图对应的语句是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若z∈C,|z-2|=
11
,且|z-3|=4,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(3x+φ)(A>0,0<φ<π)在x=
π
12
时取得最大值4
(1)求f(x)的解析式
(2)若f(
2
3
α
+
π
12
)=2
3
,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点F的距离为3,延长MF交抛物线于点N.
(1)求抛物线的方程;
(2)求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果(
3
+2x)2013=a0+a1x+a2x2+…+a2013x2013,那么(a1+a3+a5+…+a20132-(a0+a2+a4+…+a20122=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用数字0,1,2,3,4组成没有重复数字的五位数,其中数字1,2相邻.这样的五位数有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中正确的个数为
 
 个
①一个命题的逆命题为真,它的否命题也一定为真;
②若一个命题的否命题为假,则它本身一定为真;
x>1
y>2
x+y>3
xy>2
的充要条件;
④“x=3”是“|x|=3”成立的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b(x∈R).已知
ON
OA
+(1-λ)
OB
,若|
MN
|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x2-3x+2在[1,3]上k阶线性相似,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
(x2-ax+3)在(-∞,1)上是增函数,则实数a的范围是
 

查看答案和解析>>

同步练习册答案