精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2|x|-1,(-3≤x≤3),
(Ⅰ)指出函数的奇偶性并画出其简图;
(Ⅱ)若y=a与函数f(x)的图象有两个交点求实数a的取值范围.
分析:(I)根据函数的解析式,我们判断f(-x)与f(x)的关系,进而根据函数奇偶性的定义可得函数的奇偶性,进而结合二次函数的图象和性质及偶函数图象关于y轴对称,可得函数简图;
(II)根据(I)中函数简图,数形结合可分析出y=a与函数f(x)的图象有两个交点时,实数a的取值范围.
解答:解:(I)∵函数f(x)=x2-2|x|-1,(-3≤x≤3)的定义域关于原点对称,
且f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x)
故函数为偶函数,其简图如下图所示:

(II)由(I)中函数的简图可得
当a<-2时,y=a与函数f(x)的图象没有交点;
当a=-2时,y=a与函数f(x)的图象有两个交点;
当-2<a<-1时,y=a与函数f(x)的图象有四个交点;
当a=-1时,y=a与函数f(x)的图象有三个交点;
当a>-1时,y=a与函数f(x)的图象有两个交点;
故满足条件的实数a的取值范围是,a>-1或a=-2
点评:本题考查的知识点是二次函数的图象和性质,带绝对值的函数,其中画出函数的图象是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案