精英家教网 > 高中数学 > 题目详情
由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.
分析:(1)先求出函数y=f(x)的反函数y=f-1(x),根据bn=f-1(n)可求出p,即可求出an
(2)先求出dn,然后求出sn,根据Hn为数列{Sn}的调和平均数,可求出Hn的关系式,从而求出
lim
n→∞
=
Hn
n

(3)先根据正数数列{cn}的前n项之和Tn=
1
2
(cn+
n
cn
)
求出c1,当n≥2时,cn=Tn-Tn-1,所以Tn2-Tn-12=n,然后利用叠加法求出Tn表达式即可.
解答:解:(1)由题意的:f-1(x)=
1-x
x-p
=f(x)=
px+1
x+1
,所以p=-1,(2分)
所以an=
-n+1
n+1
(3分)
(2)an=
-n+1
n+1
dn=
2
an+1
-1=n
,(4分)
sn为数列{dn}的前n项和,sn=
n(n+1)
2
,(5分)
又Hn为数列{Sn}的调和平均数,
所以Hn=
n
1
s1
+
1
s2
+…
1
sn
=
n
2
1×2
+
2
3×2
+…
2
n(n-1)
=
(n+1)
2
(8分)
lim
n→o
 
Hn
n
=
lim
n→o
n+1
2n
=
1
2
(10分)
(3)因为正数数列{cn}的前n项之和Tn=
1
2
(cn+
n
cn
)

所以c1=
1
2
(c1+
n
c1
)
解之得:c1=1,T1=1(11分)
当n≥2时,cn=Tn-Tn-1,所以2Tn=Tn-Tn1+
n
Tn-Tn1

Tn-Tn-1=
n
Tn-Tn-1
即Tn2-Tn-12=n(14分)
所以,T2n-1-T2n-2=n-1,T2n-2-T2n-3=n-2,…T22-T12=2累加得:
Tn2-T12=2+3+4+…+n2(16分)
T
2
n
=1+2+3+4+…+n=
n(n+1)
2
Tn=
(n+1)n
2
(18分)
点评:本题主要考查了反函数以及数列与函数的综合问题,同时考查了数列的求和以及累加法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区一模)由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=
x+1
2
确定数列{an}的反数列,试求数列{bn}的前n项和Sn
(2)若函数f(x)=2
x
确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案