精英家教网 > 高中数学 > 题目详情
由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn
分析:(1)f(x)=2
x
(x≥0)?an=2
n
f-1(x)=
x2
4
(x≥0)
,由此能求出数列{an}的反数列为{bn}的通项公式.(2)把不等式化为
2
n+1
+
2
n+2
+…+
2
2n
1
2
loga(1-2a)
Tn=
2
n+1
+
2
n+2
+…+
2
2n
Tn+1-Tn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0
,数列{Tn}单调递增,所以(Tnmin=T1=1,要使不等式恒成立,只要1>
1
2
loga(1-2a)
,由此能求出使不等式对于任意正整数n恒成立的a的取值范围.
(3)设公共项tk=cp=dn,k、p、q为正整数,当λ为奇数时,tn=2n-1,{tn}的前n项和Sn=n2.当λ为偶数时,tn=3n,{tn}的前n项和Sn=
3
2
(3n-1)
解答:解:(1)f(x)=2
x
(x≥0)?an=2
n
(n为正整数),f-1(x)=
x2
4
(x≥0)

所以数列{an}的反数列为{bn}的通项bn=
n2
4
(n为正整数)(2分)
(2)对于(1)中{bn},不等式化为
2
n+1
+
2
n+2
+…+
2
2n
1
2
loga(1-2a)
..(3分)
Tn=
2
n+1
+
2
n+2
+…+
2
2n
Tn+1-Tn=
2
2n+1
+
2
2(n+1)
-
2
n+1
=
2
2n+1
-
2
2n+2
>0

∴数列{Tn}单调递增,(5分)
所以(Tnmin=T1=1,要是不等式恒成立,只要1>
1
2
loga(1-2a)
.(6分)
∵1-2a>0,∴0<a<
1
2
,又1-2a>a2,0<a<
2
-1

所以,使不等式对于任意正整数n恒成立的a的取值范围是(0,
2
-1)
..(8分)
(3)设公共项tk=cp=dn,k、p、q为正整数,
当λ为奇数时,cn=2n-1,dn=
1
2
(n+1)
(9分)
2p-1=
1
2
(p+1),q=4p-3
,则{cn}?{bn}(表示{cn}是{bn}的子数列),tn=2n-1
所以{tn}的前n项和Sn=n2..(11分)
当λ为偶数时,cn=3n,dn=log3n(12分)
3q=log3q,则q=33p,同样有{cn}?{bn},tn=3n
所以{tn}的前n项和Sn=
3
2
(3n-1)
(14分)
点评:本题考查数列通项公式的求法、实数的取值范围和前n项和的求法,解题时要注意导数的合理运用和分类讨论思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区一模)由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=
x+1
2
确定数列{an}的反数列,试求数列{bn}的前n项和Sn
(2)若函数f(x)=2
x
确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案