精英家教网 > 高中数学 > 题目详情

m为何值时,f(x)=x2+2mx+3m+4
(1)有且仅有一个零点
(2)有两个零点且均比-1大.

解:(1)∵f(x)=x2+2mx+3m+4,有且仅有一个零点
说明二次函数与x轴只有一个交点,可得
△=(2m)2-4×(3m+4)=0解得m=4或m=-1;
(2)∵f(x)=x2+2mx+3m+4,有两个零点且均比-1大.
函数开口向上,对称轴为x=-m,
,即
解得-5<m<-1;
分析:(1)f(x)=x2+2mx+3m+4,有且仅有一个零点,二次函数图象开口向上,可得△=0,求出m的值;
(2)有两个零点且均比-1大,根据方程根与系数的关系,列出不等式,求出m的范围;
点评:此题主要考查二次函数的性质及其对称轴的应用,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x-In(x+m),其中常数m为整数.
(1)当m为何值时,f(x)≥0;
(2)定理:若函数g(x)在[a,b]上连续,且g(a)与g(b)异号,则至少存在一点x0∈(a,b),使g(x0)=0.
试用上述定理证明:当整数m>1时,方程f(x)=0,在[e-m-m,e2m-m]内有两个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)m为何值时,f(x)=x2+2mx+3m+4①有且仅有一个零点;②有两个零点且均比-1大;
(2)若函数f(x)=|4x-x2|+a有4个零点,求褛a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(m2-m-1)•x-5m-3,m为何值时,f(x):
(1)是正比例函数;
(2)是反比例函数;
(3)是二次函数;
(4)是幂函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lg|x|+mxx
(x≠0)

(1)实数m为何值时,f(x)为奇函数?并说明理由;
(2)若函数f(x)的图象与x轴恰有三个不同的公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5、不等式选讲】
关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?

查看答案和解析>>

同步练习册答案