精英家教网 > 高中数学 > 题目详情
4.下列命题中正确的是①②.
①若△ABC在平面α外,它的三条边所在的直线分别交平面α于P,Q,R,则P,Q,R三点共线;
②若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;
③空间中不共面的五个点一定能确定10个平面;
④若a不平行于平面α,且a?α,则α内的所有直线与a异面.

分析 根据公理3可判断①;根据公理1,2可判断②;举出反例四个点共面,但第5个点与其它四点不共面,可判断③;根据空间直线与直线位置关系的几何特征,可判断④.

解答 解:①若△ABC在平面α外,它的三条边所在的直线分别交平面α于P,Q,R,
则P,Q,R均在平面ABC与平面α的交线上,
由公理3可得:P,Q,R三点共线,故①正确;
若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,有公理2和公理1可得,则这四条直线共面,故②正确;
空间中不共面的五个点,当四个点共面,但第5个点与其它四点不共面时,只能确定1+${C}_{4}^{2}$=7个平面,故③错误;
若a不平行于平面α,且a?α则a∩α=A,则α内的所有不过交点A直线与a异面,过交点A的直线与a相交,故④错误;
故正确的命题为:①②,
故答案为:①②

点评 本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.给出如下四个命题:
①已知p,q都是命题,若p∧q为假命题,则p,q均为假命题;
②命题“函数y=2x3-3x+1的图象关于点(0,1)成中心对称”;
③命题“不等式2x>x2在(2,+∞)上恒成立”;
④“a≥0”是“?x∈R,使得ax2+x+1≥0”的充分必要条件.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.C为线段AB上一点,P为直线AB外一点,满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=4$\sqrt{5}$,|$\overrightarrow{PA}$-$\overrightarrow{PB}$|=2$\sqrt{5}$,$\frac{\overrightarrow{PA}•\overrightarrow{PC}}{|\overrightarrow{PA}|}$=$\frac{\overrightarrow{PB}•\overrightarrow{PC}}{|\overrightarrow{PB}|}$,$\overrightarrow{PI}$=λ$\overrightarrow{IC}$,$\overrightarrow{BI}$=$\overrightarrow{BA}$+m($\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$+$\frac{\overrightarrow{AP}}{|\overrightarrow{AP}|}$),m>0,则λ=(  )
A.1B.$\frac{1}{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a>0,b>0若不等式$\frac{m}{3a+b}$-$\frac{3}{a}$-$\frac{1}{b}$≤0,恒成立,则m的最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x0∈R,${9}^{{x}_{0}}$-m•${3}^{{x}_{0}}$+4≤0,若p为真命题,则实数m的取值范围是(  )
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(普通中学做)如图所示,程序框图输出的某一实数对(x,y)中,若y=32,则x=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数
(1)求a的值;
(2)讨论关于x的方程$\frac{lnx}{f(x)}={x}^{2}$-2ex+e2+$\frac{1}{e}$的根的个数;
(3)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{\begin{array}{l}sinx+1,x<2\\{x^2}+bx,x≥2\end{array}\right.$,若$f(f(\frac{π}{2}))=4b$,则b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式|2x-1|+x>1的解集是{x|x<0,或x>$\frac{2}{3}$}.

查看答案和解析>>

同步练习册答案