精英家教网 > 高中数学 > 题目详情

【题目】201911日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房货款利息、住房租金、赡养老人.某单位有老年员工140人,中年员工180人,青年员工80人,现采用分层抽样的方法,从该单位员工中抽取20人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如下:

员工\人数\专项

子女教育

继续教育

大病医疗

住房贷款利息

住房租金

赡养老人

老员工

4

0

2

2

0

3

中年员工

8

2

1

5

1

8

青年员工

1

2

0

1

2

1

(Ⅰ)在抽取的20人中,老年员工、中年员工、青年员工各有多少人;

(Ⅱ)从上表享受住房货款利息专项扣除的员工中随机选取2人,求选取2人都是中年员工的概率.

【答案】1794,(2

【解析】

1)先求出该单位所有员工数量,再根据分层抽样的特点求解即;

2)先列出从享受住房货款利息专项扣除的员工中随机选取2人的所有情况,然后再求出其中2人都是中年员工的情况,再利用古典概型公式求解.

解:(1)该单位员工共有140+180+80=400人,

则抽取老年员工有人,

抽取中年员工有人,

抽取青年员工有人,

所以在抽取的20人中,老年员工、中年员工、青年员工各有7人,9人,4人,

(2)从上表可知享受住房货款利息专项扣除的员工共有8人,其中老年员工2人,记为A,B,中年员工5人,记为C,D,E,F,G,青年员工1人,记为H,则从这8人中随机选取2人有:AB,AC,AD,AE,AF,AG,AH,BC,BD,BE,BF,BG,BH,CD,CE,CF,CG,CH,DE,DF,DG,DH,EF,EG,EH,FG,FH,GH共28种等可能情况,其中2人都是中年员工有CD,CE,CF,CG,DE,DF,DG,EF,EG,FG有10种等可能情况,

所以选取2人都是中年员工的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(x+)(A>0>00<<)的部分图象如图所示,又函数g(x)=f(x+).

1)求函数g(x)的单调增区间;

2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年,某省将实施新高考,年秋季入学的高一学生是新高考首批考生,新高考不再分文理科,采用模式,其中语文、数学、外语三科为必考科目,满分各分,另外,考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物门科目中自选门参加考试(),每科目满分.为了应对新高考,某高中从高一年级名学生(其中男生人,女生人)中,采用分层抽样的方法从中抽取n名学生进行调查.

1)已知抽取的n名学生中含女生人,求n的值及抽取到的男生人数;

2)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下面表格是根据调查结果得到的列联表,请将下面的列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“历史”

总计

男生

10

女生

30

总计

3)在抽取到的名女生中,在(2)的条件下,按选择的科目进行分层抽样,抽出名女生,了解女生对“历史”的选课意向情况,在这名女生中再抽取人,求这人中选择“历史”的人数为人的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

1)讨论函数的单调性;

2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“支付宝捐步”已经成为当下最热门的健身方式,为了了解是否使用支付宝捐步与年龄有关,研究人员随机抽取了5000名使用支付宝的人员进行调查,所得情况如下表所示:

50岁以上

50岁以下

使用支付宝捐步

1000

1000

不使用支付宝捐步

2500

500

(1)由上表数据,能否有99.9%的把握认为是否使用支付宝捐步与年龄有关?

(2)55岁的老王在了解了捐步功能以后开启了自己的捐步计划,可知其在捐步的前5天,捐步的步数与天数呈线性相关.

第x天

第1天

第2天

第3天

第4天

第5天

步数

4000

4200

4300

5000

5500

(i)根据上表数据,建立关于的线性回归方程

(ii)记由(i)中回归方程得到的预测步数为,若从5天中任取3天,记的天数为X,求X的分布列以及数学期望.

附参考公式与数据:;K2=

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为

(Ⅰ)求椭圆的方程;

(Ⅱ)点为椭圆上一动点,连接,设的角平分线交椭圆的长轴于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中,ADBCABBCBDDC,点EBC的中点.将△ABD沿BD折起,使ABAC,连接AEACDE,得到三棱锥ABCD.

1)求证:平面ABD⊥平面BCD

2)若AD=1,二面角CABD的余弦值为,求二面角BADE的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中, 互相垂直, 是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案