精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=4x-2x-f(1),则f(-1)的值为(  )
A.1B.-1C.eD.-e

分析 根据条件令x=1,先求出f(1)的值,然后利用函数奇偶性的性质进行转化求解即可.

解答 解:当x>0时,f(x)=4x-2x-f(1),
∴当x=1时,f(1)=4-2-f(1),
即2f(1)=2,则f(1)=1,
则当x>0时,f(x)=4x-2x-1,
∵函数f(x)为定义在R上的奇函数,
∴f(-1)=-f(1)=-1,
故选:B.

点评 本题主要考查函数值的计算,根据函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.$\frac{3-2i}{1+3i}$=(  )
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形ABCD的边AB=8,BC=4,以CD为直径在矩形的外部作一半圆,圆心为O,过CD上一点N作AB的垂线交半圆弧于P,交AB于Q,M是曲线PDA上一动点.
(1)设∠POC=30°,若PM=QM,求△PMQ的面积;
(2)求△PMQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的一点,PA=PD=4=AD=2BC,CD=2.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设|PM|=t|MC|,试确定t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={-2,-1,1,2},B={-3,-1,0,2},则A∩B的元素的个数为(  )
A.2B.3C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在2016年高考结束后,针对高考成绩是否达到了考生自己预期水平的情况,某校在高三部分毕业生内部进行了抽样调查,现从高三年级A、B、C、D、E、F六个班随机抽取了50人,将统计结果制成了如下的表格:
班级
抽取人数10 12 12 
其中达到预期水平的人数 3 6 6
(Ⅰ)根据上述表格的数据估计,该校这些班中,哪个班的学生高考成绩达到自己的预期水平的概率较高?
(Ⅱ)若从A班、F班,从抽查到的达到预期水平的所有对象中,再随机选取2名同学进行详细调查,求选取的2人中含有A班同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=-2+i(i为虚数单位),则复数$z+\frac{1}{z}$的虚部为(  )
A.$\frac{4}{5}$B.$\frac{4}{5}i$C.$\frac{6}{5}$D.$\frac{6}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=$\frac{5}{9}$,则D(3Y+1)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,已知a2+a5=4,an=33,a1=$\frac{1}{3}$,则n是(  )
A.48B.49C.50D.51

查看答案和解析>>

同步练习册答案