精英家教网 > 高中数学 > 题目详情
1.$\frac{3-2i}{1+3i}$=(  )
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{3-2i}{1+3i}$=$\frac{(3-2i)(1-3i)}{(1+3i)(1-3i)}=\frac{-3-11i}{10}=-\frac{3}{10}-\frac{11}{10}i$.
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在${(x+\frac{1}{2x})^4}$的展开式中,x2的系数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设数列{an}的前n项和为Sn,a4=7且4Sn=n(an+an+1),则a5等于(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.${∫}_{0}^{\frac{π}{6}}$cosxdx=${∫}_{1}^{a}$$\frac{1}{x}$dx(a>1),则a的值为(  )
A.$\sqrt{e}$B.2C.eD.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2lnx-ax2+3,若存在实数m、n∈[1,5]满足n-m≥2时,f(m)=f(n)成立,则实数a的最大值为(  )
A.$\frac{ln5-ln3}{8}$B.$\frac{ln3}{4}$C.$\frac{ln5+ln3}{8}$D.$\frac{ln4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△PF1F2的一个顶点P(7,12)在双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1上,另外两顶点F1、F2为该双曲线的左、右焦点,则△PF1F2的内心坐标为(1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(m,-6),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,若Sn=2n+n-1.则a6=33.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=4x-2x-f(1),则f(-1)的值为(  )
A.1B.-1C.eD.-e

查看答案和解析>>

同步练习册答案