精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2lnx-ax2+3,若存在实数m、n∈[1,5]满足n-m≥2时,f(m)=f(n)成立,则实数a的最大值为(  )
A.$\frac{ln5-ln3}{8}$B.$\frac{ln3}{4}$C.$\frac{ln5+ln3}{8}$D.$\frac{ln4}{3}$

分析 由f(m)=f(n)⇒2lnn-an2+3=2lnm-am2+3,得a=$\frac{lnn-lnm}{{n}^{2}-{m}^{2}}$.令n=m+t,(t≥1),则a=$\frac{ln(1+\frac{t}{m})}{t(2m+t)}$,显然g(m)═$\frac{ln(1+\frac{t}{m})}{t(2m+t)}$,在m∈[1,+∞)单调递减,得a≤g(1)=$\frac{ln(1+t)}{t(2+t)}$,(t≥2)
令h(t)=g(1)=$\frac{ln(1+t)}{t(2+t)}$,(t≥2),h′(t)=$\frac{{t}^{2}+2t-2ln(t+1)(t+1)^{2}}{[t(t+2)]^{2}(t+1)}$,根据h(t)的单调性求得实数a的最大值.

解答 解:由f(m)=f(n)⇒2lnn-an2+3=2lnm-am2+3,∴a=$\frac{lnn-lnm}{{n}^{2}-{m}^{2}}$.
令n=m+t,(t≥1),则a=$\frac{ln(1+\frac{t}{m})}{t(2m+t)}$,(m∈[1,5],t≥2)
显然g(m)═$\frac{ln(1+\frac{t}{m})}{t(2m+t)}$,在m∈[1,+∞)单调递减,∴a≤g(1)=$\frac{ln(1+t)}{t(2+t)}$,(t≥1)
令h(t)=g(1)=$\frac{ln(1+t)}{t(2+t)}$,(t≥2),h′(t)=$\frac{{t}^{2}+2t-2ln(t+1)(t+1)^{2}}{[t(t+2)]^{2}(t+1)}$
∵t≥2,∴2ln(t+1)>1,则t2+2t-2ln(t+1)(t+1)2<0,
∴令h(t)=g(1)=$\frac{ln(1+t)}{t(2+t)}$,(t≥2),单调递减,
∴$a≤h(2)=\frac{ln3}{4}$
∴实数a的最大值为$\frac{ln3}{4}$.
故选:B

点评 本题考查了利用导数求函数的单调性、最值,考查了转化思想,计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某化妆品商店为促进顾客消费,在“三八”妇女节推出了“分段折扣”活动,具体规则如下表:
购买商品金额折扣
消费不超过200元的部分9折
消费超过200元但不超过500元的部分8折
消费超过500元但不超过1000元的部分7折
消费超过1000元的部分6折
例如,某顾客购买了300元的化妆品,她实际只需付:200×0.9+(300-200)×0.8=260(元).为了解顾客的消费情况,随机调查了100名顾客,得到如下统计表:
购买商品金额(0,200](200,500](500,1000]1000以上
人数10403020
(Ⅰ)写出顾客实际消费金额y与她购买商品金额x之间的函数关系式(只写结果);
(Ⅱ)估算顾客实际消费金额y不超过180的概率;
(Ⅲ)估算顾客实际消费金额y超过420的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线m:ax-y+a+3=0与直线n:2x-y=0平行,则直线m与n间的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,M是SB的中点,AB∥CD,BC⊥CD,SD⊥面SAB,且AB=BC=2CD=2SD.
(Ⅰ)证明:CD⊥SD;
(Ⅱ)证明:CM∥面SAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个类比中,正确得个数为(  )
(1)若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数.
(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为$\frac{1}{2}$.
(3)若一个等差数列的前3项和为1,则该数列的第2项为$\frac{1}{3}$.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1.
(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\frac{3-2i}{1+3i}$=(  )
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=[(a-1)x-a]lnx+x-1,a≥$\frac{1}{2}$.
(I)当a=1时,求f(x)的最小值;
(II)求证:f(x)在区间(0,1)单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平行四边形ABCD中,AP⊥BD,垂足为P,AP=$\sqrt{3}$,则$\overrightarrow{AP}$•$\overrightarrow{AC}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={-2,-1,1,2},B={-3,-1,0,2},则A∩B的元素的个数为(  )
A.2B.3C.4D.1

查看答案和解析>>

同步练习册答案