精英家教网 > 高中数学 > 题目详情
5.在平行四边形ABCD中,AP⊥BD,垂足为P,AP=$\sqrt{3}$,则$\overrightarrow{AP}$•$\overrightarrow{AC}$=6.

分析 利用数量积的定义和三角函数定义进行计算.

解答 解:设AC,BD交于点O,
则$\overrightarrow{AP}•\overrightarrow{AC}$=AP•AC•cos∠PAC=2$\sqrt{3}$•AO•cos∠PAC,
∵AP⊥BD,
∴AO•cos∠PAC=AP=$\sqrt{3}$,
∴$\overrightarrow{AP}•\overrightarrow{AC}$=2$\sqrt{3}•\sqrt{3}$=6.
故答案为6.

点评 本题考查了平面向量的数量积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足a1=1,a2=3,an+2=(2+cosnπ)(an+1)-3(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=$\left\{\begin{array}{l}\frac{{{{log}_3}{a_n}}}{{{n^2}({n+2})}},n=2k({k∈{N^*}})\\{a_n},n=2k-1({k∈{N^*}})\end{array}$,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2lnx-ax2+3,若存在实数m、n∈[1,5]满足n-m≥2时,f(m)=f(n)成立,则实数a的最大值为(  )
A.$\frac{ln5-ln3}{8}$B.$\frac{ln3}{4}$C.$\frac{ln5+ln3}{8}$D.$\frac{ln4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(m,-6),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sinxcos2x,则下列关于函数f(x)的结论中,错误的是(  )
A.最大值为1B.图象关于直线x=-$\frac{π}{2}$对称
C.既是奇函数又是周期函数D.图象关于点($\frac{3π}{4}$,0)中心对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,若Sn=2n+n-1.则a6=33.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}的首项为$\frac{3}{2}$,公比为-$\frac{1}{2}$,其前n项和为Sn,若对任意的n∈N*,都有Sn-$\frac{1}{{S}_{n}}$∈[s,t],则t-s的最小值为$\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)为定义域在R上的奇函数,当x>0,f(x)=lnx-2x-f(1),则当x<0时,f(x)的表达式为(  )
A.f(x)=ln(-x)+2x+1B.f(x)=-ln(-x)-2x+1C.f(x)=-ln(-x)-2x-1D.f(x)=-ln(-x)+2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,输出的S值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案