精英家教网 > 高中数学 > 题目详情
13.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(m,-6),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=13.

分析 根据题意,由向量的垂直与向量数量积的关系可得若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=2m-18=0,解可得m的值,即可得$\overrightarrow{b}$的坐标,从而可得向量2$\overrightarrow{a}$+$\overrightarrow{b}$的坐标,由向量模的计算公式计算可得答案.

解答 解:根据题意,向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(m,-6),
若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=2m-18=0,解可得m=9,
则$\overrightarrow{b}$=(9,-6),
故2$\overrightarrow{a}$+$\overrightarrow{b}$=(13,0);
故|2$\overrightarrow{a}$+$\overrightarrow{b}$|=13;
故答案为:13.

点评 本题考查向量的坐标计算,涉及向量的数量积、模的坐标计算,关键是求出m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直线$\sqrt{2}$ax+by=1与圆x2+y2=1相交于A、B两点(其中a、b是正实数),且△AOB是直角三角形(O是坐标原点),则$\frac{1}{ab}$的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.2D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥S-ABCD中,M是SB的中点,AB∥CD,BC⊥CD,SD⊥面SAB,且AB=BC=2CD=2SD.
(Ⅰ)证明:CD⊥SD;
(Ⅱ)证明:CM∥面SAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\frac{3-2i}{1+3i}$=(  )
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=[(a-1)x-a]lnx+x-1,a≥$\frac{1}{2}$.
(I)当a=1时,求f(x)的最小值;
(II)求证:f(x)在区间(0,1)单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+x+$\frac{a}{x}$.
(Ⅰ)若a=-2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若关于x的不等式f(x)≥a+1在(0,+∞)上恒成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平行四边形ABCD中,AP⊥BD,垂足为P,AP=$\sqrt{3}$,则$\overrightarrow{AP}$•$\overrightarrow{AC}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形ABCD的边AB=8,BC=4,以CD为直径在矩形的外部作一半圆,圆心为O,过CD上一点N作AB的垂线交半圆弧于P,交AB于Q,M是曲线PDA上一动点.
(1)设∠POC=30°,若PM=QM,求△PMQ的面积;
(2)求△PMQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=-2+i(i为虚数单位),则复数$z+\frac{1}{z}$的虚部为(  )
A.$\frac{4}{5}$B.$\frac{4}{5}i$C.$\frac{6}{5}$D.$\frac{6}{5}i$

查看答案和解析>>

同步练习册答案