分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的最小值即可;
(Ⅱ)求出函数的导数,通过讨论a的范围,确定函数的单调区间,从而证明结论即可.
解答 解:(Ⅰ)a=1时,f(x)=-lnx+x-1,f′(x)=$\frac{x-1}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
故f(x)在(0,1)递减,在(1,+∞)递增,
故f(x)min=f(1)=0;
(Ⅱ)f′(x)=(a-1)lnx+$\frac{a(x-1)}{x}$,
若a≥1,x∈(0,1)时,f′(x)<0,f(x)在(0,1)递减,
若$\frac{1}{2}$≤a<1,由(Ⅰ)得,x∈(0,1)时,
-ln$\frac{1}{x}$+$\frac{1}{x}$-1>0,即lnx>$\frac{x-1}{x}$,
则f′(x)=(a-1)lnx+$\frac{a(x-1)}{x}$<$\frac{(a-1)(x-1)}{x}$+$\frac{a(x-1)}{x}$=$\frac{(2a-1)(x-1)}{x}$≤0,
f(x)在(0,1)递减,
综上,a≥$\frac{1}{2}$时,f(x)在区间(0,1)递减.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{ln5-ln3}{8}$ | B. | $\frac{ln3}{4}$ | C. | $\frac{ln5+ln3}{8}$ | D. | $\frac{ln4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值为1 | B. | 图象关于直线x=-$\frac{π}{2}$对称 | ||
| C. | 既是奇函数又是周期函数 | D. | 图象关于点($\frac{3π}{4}$,0)中心对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com