精英家教网 > 高中数学 > 题目详情
18.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ≤4-a)=P(ξ≥2+3a),则a=(  )
A.-1B.1C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 根据正态分布的对称特点即可求出a.

解答 解:∵ξ~N(2,σ2),且P(ξ≤4-a)=P(ξ≥2+3a),
∴4-a+2+3a=4,
解得a=-1.
故选A.

点评 本题考查了正态分布的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,直线y=kx(k>0)与椭圆C交于A,B两点,若$AF⊥BF,∠FAB∈(0,\frac{π}{12}]$,则C的离心率取值范围为(  )
A.$[\frac{{\sqrt{2}}}{2},1)$B.$[\frac{{\sqrt{6}}}{3},1)$C.$[\frac{{\sqrt{3}}}{3},1)$D.$[\frac{2}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{\begin{array}{l}x,\;0<x≤1\\ 2f(x-1),x>1\end{array}\right.$,则$f(\frac{3}{2})$=1,f(f(3))=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某化妆品商店为促进顾客消费,在“三八”妇女节推出了“分段折扣”活动,具体规则如下表:
购买商品金额折扣
消费不超过200元的部分9折
消费超过200元但不超过500元的部分8折
消费超过500元但不超过1000元的部分7折
消费超过1000元的部分6折
例如,某顾客购买了300元的化妆品,她实际只需付:200×0.9+(300-200)×0.8=260(元).为了解顾客的消费情况,随机调查了100名顾客,得到如下统计表:
购买商品金额(0,200](200,500](500,1000]1000以上
人数10403020
(Ⅰ)写出顾客实际消费金额y与她购买商品金额x之间的函数关系式(只写结果);
(Ⅱ)估算顾客实际消费金额y不超过180的概率;
(Ⅲ)估算顾客实际消费金额y超过420的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合$A=\{\left.x\right|y=\sqrt{2x-{x^2}}\}$,B={y|y=2x,x>0},则A∪B=(  )
A.(1,2]B.[0,+∞)C.[0,1)∪(1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线$\sqrt{2}$ax+by=1与圆x2+y2=1相交于A、B两点(其中a、b是正实数),且△AOB是直角三角形(O是坐标原点),则$\frac{1}{ab}$的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.2D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某高校在举行艺术类高考招生考试时,对100个考生进行了一项专业水平考试,考试成绩满分为100分,成绩出来后,老师对每个成绩段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人数进行了统计,丙得到如图所示的频率分布直方图.
(1)求a的值,并从频率分布直方图中求出这些成绩的中位数;
(2)为了能从分了解考生情况,对考试成绩落在[70,90)内的考生采用分层抽样的方法抽取5名考生.
(i)求在[70,80)与[80,90)内各抽取多少名考生;
(ii)如果从这5名中选出两人进行一段表演,求恰有一名考生来自[80,90)组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线m:ax-y+a+3=0与直线n:2x-y=0平行,则直线m与n间的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=[(a-1)x-a]lnx+x-1,a≥$\frac{1}{2}$.
(I)当a=1时,求f(x)的最小值;
(II)求证:f(x)在区间(0,1)单调递减.

查看答案和解析>>

同步练习册答案