精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=sinxcos2x,则下列关于函数f(x)的结论中,错误的是(  )
A.最大值为1B.图象关于直线x=-$\frac{π}{2}$对称
C.既是奇函数又是周期函数D.图象关于点($\frac{3π}{4}$,0)中心对称

分析 根据题意逐一判断各个选项是否正确,从而得出结论.

解答 解:∵函数f(x)=sinxcos2x,当x=$\frac{3π}{2}$时,f(x)取得最大值为1,故A正确;
当x=-$\frac{π}{2}$时,函数f(x)=1,为函数的最大值,故图象关于直线x=-$\frac{π}{2}$对称;故B正确;
函数f(x)满足f(-x)=sin(-x)cos(-2x)=-sinxcos2x=-f(x),故函数f(x)为奇函数,
再根据f(x+2π)=sin(x+2π)cos[-2(x+2π)]=sinxcos2x,故f(x)的周期为2π,故C正确;
由于f($\frac{3π}{2}$-x)+f(x)=-cosx•cos(3π-2x)+sinxcos2x=cosxcos2x+sinxcos2x=cos2x(sinx+cosx)=0不一定成立,
故f(x)图象不一定关于点($\frac{3π}{4}$,0)中心对称,故D不正确,
故选:D.

点评 本题考查三角函数的对称性,考查了三角函数值域的解法,考查排除法在选择题中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某高校在举行艺术类高考招生考试时,对100个考生进行了一项专业水平考试,考试成绩满分为100分,成绩出来后,老师对每个成绩段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人数进行了统计,丙得到如图所示的频率分布直方图.
(1)求a的值,并从频率分布直方图中求出这些成绩的中位数;
(2)为了能从分了解考生情况,对考试成绩落在[70,90)内的考生采用分层抽样的方法抽取5名考生.
(i)求在[70,80)与[80,90)内各抽取多少名考生;
(ii)如果从这5名中选出两人进行一段表演,求恰有一名考生来自[80,90)组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个类比中,正确得个数为(  )
(1)若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数.
(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为$\frac{1}{2}$.
(3)若一个等差数列的前3项和为1,则该数列的第2项为$\frac{1}{3}$.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1.
(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=[(a-1)x-a]lnx+x-1,a≥$\frac{1}{2}$.
(I)当a=1时,求f(x)的最小值;
(II)求证:f(x)在区间(0,1)单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,则实数λ的取值范围为[14,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平行四边形ABCD中,AP⊥BD,垂足为P,AP=$\sqrt{3}$,则$\overrightarrow{AP}$•$\overrightarrow{AC}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等差数列{an}中,已知a1=-1,S19=0,则使an>0的最小正整数n为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}的各项均为正数,且an+1=an+$\frac{2}{{a}_{n}}$-1(n∈N*),{an}的前n项和是Sn
(Ⅰ)若{an}是递增数列,求a1的取值范围;
(Ⅱ)若a1>2,且对任意n∈N*,都有Sn≥na1-$\frac{1}{3}$(n-1),证明:Sn<2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知不等式ax2-3x+6>4的解集为 {x|x<1或x>b}(b>1).
(1)求实数a,b的值;
(2)解不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

同步练习册答案