分析 (1)根据不等式ax2-3x+6>4的解集为{x|x<1或x>b},可得x=1与x=b是方程ax2-3x+2=0的两个实数根,利用韦达定理即可求出实数a,b的值
(2)将(1)中的a,b的值带入,对c讨论求解不等式即可.
解答 解:(1)∵不等式ax2-3x+6>4的解集为{x|x<1或x>b},
∴x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.
由根与系数的关系,可得:$\frac{2}{a}=b,\frac{3}{a}=1+b$.
解得:a=1,b=2.
(2)由(1)可知a=1,b=2,
∴原不等式ax2-(ac+b)x+bc<0,可化为x2-(2+c)x+2c<0,
即(x-2)(x-c)<0.
①当c>2时,不等式(x-2)(x-c)<0的解集为{x|2<x<c};
②当c<2时,不等式(x-2)(x-c)<0的解集为{x|c<x<2};
③当c=2时,不等式(x-2)(x-c)<0的解集为∅.
点评 本题主要考查了一元二次不等式的应用和讨论思想,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 最大值为1 | B. | 图象关于直线x=-$\frac{π}{2}$对称 | ||
| C. | 既是奇函数又是周期函数 | D. | 图象关于点($\frac{3π}{4}$,0)中心对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{23}{4}$ | B. | $\frac{23}{4}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{5}{4}$ | D. | -$\frac{5}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com