17£®Ä³¹«Ë¾µÄÑз¢ÍŶӣ¬¿ÉÒÔ½øÐÐA¡¢B¡¢CÈýÖÖвúÆ·µÄÑз¢£¬Ñз¢³É¹¦µÄ¸ÅÂÊ·Ö±ðΪP£¨A£©=$\frac{4}{5}$£¬P£¨B£©=$\frac{2}{3}$£¬P£¨C£©=$\frac{1}{2}$£¬Èý¸ö²úÆ·µÄÑз¢Ï໥¶ÀÁ¢£®
£¨1£©Çó¸Ã¹«Ë¾Ç¡ÓÐÁ½¸ö²úÆ·Ñз¢³É¹¦µÄ¸ÅÂÊ£»
£¨2£©ÒÑÖªA¡¢B¡¢CÈýÖÖ²úÆ·Ñз¢³É¹¦ºó´øÀ´µÄ²úÆ·ÊÕÒæ£¨µ¥Î»£ºÍòÔª£©·Ö±ðΪ1000¡¢2000¡¢1100£¬ÎªÁËÊÕÒæ×î´ó»¯£¬¹«Ë¾´ÓÖÐÑ¡ÔñÁ½¸ö²úÆ·Ñз¢£¬ÇëÄã´ÓÊýѧÆÚÍûµÄ½Ç¶ÈÀ´¿¼ÂÇÓ¦¸ÃÑз¢ÄÄÁ½¸ö²úÆ·£¿

·ÖÎö £¨1£©ÉèA£¬B£¬CÑз¢³É¹¦·Ö±ð¼ÇΪʼþA£¬B£¬C£¬ÇÒÏ໥¶ÀÁ¢£»¼ÆËãÇ¡ÓÐÁ½¸ö²úÆ·Ñз¢³É¹¦µÄ¸ÅÂʼ´¿É£»
£¨2£©Ñ¡ÔñA¡¢BºÍA¡¢C£¬B¡¢C¶ÔÓ¦µÄÁ½ÖÖ²úÆ·Ñз¢µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬±È½ÏµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÉèA£¬B£¬CÑз¢³É¹¦·Ö±ð¼ÇΪʼþA£¬B£¬C£¬ÇÒÏ໥¶ÀÁ¢£»
¼ÇʼþÇ¡ÓÐÁ½¸ö²úÆ·Ñз¢³É¹¦ÎªD£¬
ÔòP£¨D£©=P£¨A£©•P£¨B£©•P£¨$\overline{C}$£©+P£¨A£©•P£¨C£©•$P£¨\overline{B}£©$+P£¨B£©•P£¨C£©•P£¨$\overline{A}$£©
=$\frac{4}{5}$¡Á$\frac{2}{3}$¡Á$\frac{1}{2}$+$\frac{4}{5}$¡Á$\frac{1}{2}$¡Á$\frac{1}{3}$+$\frac{2}{3}$¡Á$\frac{1}{2}$¡Á$\frac{1}{5}$
=$\frac{7}{15}$£»
£¨II£©Ñ¡ÔñA¡¢BÁ½ÖÖ²úÆ·Ñз¢Ê±ÎªËæ»úʼþX£¬ÔòXµÄ¿ÉÄÜȡֵΪ0£¬1000£¬2000£¬3000£¬
ÔòP£¨X=0£©=P£¨$\overline{A}$£©•P£¨$\overline{B}$£©=$\frac{1}{5}$¡Á$\frac{1}{3}$=$\frac{1}{15}$£¬
P£¨X=1000£©=P£¨A£©•P£¨$\overline{B}$£©=$\frac{4}{5}$¡Á$\frac{1}{3}$=$\frac{4}{15}$£¬
P£¨X=2000£©=P£¨$\overline{A}$£©•P£¨B£©=$\frac{1}{5}$¡Á$\frac{2}{3}$=$\frac{2}{15}$£¬
P£¨X=3000£©=P£¨A£©•P£¨B£©=$\frac{4}{5}$¡Á$\frac{2}{3}$=$\frac{8}{15}$£¬
ÔòXµÄ·Ö²¼ÁÐΪ£»

X0100020003000
P$\frac{1}{15}$$\frac{4}{15}$$\frac{2}{15}$$\frac{8}{15}$
XµÄÊýѧÆÚÍûΪE£¨X£©=0¡Á$\frac{1}{15}$+1000¡Á$\frac{4}{15}$+2000¡Á$\frac{2}{15}$+3000¡Á$\frac{8}{15}$=$\frac{5600}{3}$£»
Ñ¡ÔñA¡¢CÁ½ÖÖ²úÆ·Ñз¢Ê±ÎªËæ»úʼþY£¬ÔòYµÄ¿ÉÄÜȡֵΪ0£¬1000£¬1100£¬2100£¬
ÔòP£¨Y=0£©=P£¨$\overline{A}$£©•P£¨$\overline{C}$£©=$\frac{1}{5}$¡Á$\frac{1}{2}$=$\frac{1}{10}$£¬
P£¨Y=1000£©=P£¨A£©•P£¨$\overline{C}$£©=$\frac{4}{5}$¡Á$\frac{1}{2}$=$\frac{4}{10}$£¬
P£¨X=1100£©=P£¨$\overline{A}$£©•P£¨C£©=$\frac{1}{5}$¡Á$\frac{1}{2}$=$\frac{1}{10}$£¬
P£¨X=2100£©=P£¨A£©•P£¨C£©=$\frac{4}{5}$¡Á$\frac{1}{2}$=$\frac{4}{10}$£¬
ÔòYµÄ·Ö²¼ÁÐΪ£»
Y0100011002100
P$\frac{1}{10}$$\frac{4}{10}$$\frac{1}{10}$$\frac{4}{10}$
YµÄÊýѧÆÚÍûΪE£¨Y£©=0¡Á$\frac{1}{10}$+1000¡Á$\frac{4}{10}$+1100¡Á$\frac{1}{10}$+2100¡Á$\frac{4}{10}$=1330£¨ÍòÔª£©£»
Ñ¡ÔñA¡¢BÁ½ÖÖ²úÆ·Ñз¢Ê±ÎªËæ»úʼþZ£¬ÔòZµÄ¿ÉÄÜȡֵΪ0£¬2000£¬1100£¬3100£¬
ÔòP£¨Z=0£©=P£¨$\overline{B}$£©•P£¨$\overline{C}$£©=$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1}{6}$£¬
P£¨Z=2000£©=P£¨B£©•P£¨$\overline{C}$£©=$\frac{2}{3}$¡Á$\frac{1}{2}$=$\frac{2}{6}$£¬
P£¨X=1100£©=P£¨$\overline{B}$£©•P£¨C£©=$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1}{6}$£¬
P£¨X=3100£©=P£¨B£©•P£¨C£©=$\frac{2}{3}$¡Á$\frac{1}{2}$=$\frac{2}{6}$£¬
ÔòZµÄ·Ö²¼ÁÐΪ£»
Z0200011003100
P$\frac{1}{6}$$\frac{2}{6}$$\frac{1}{6}$$\frac{2}{6}$
ZµÄÊýѧÆÚÍûΪE£¨Z£©=0¡Á$\frac{1}{6}$+2000¡Á$\frac{2}{6}$+1100¡Á$\frac{1}{6}$+3100¡Á$\frac{2}{6}$=$\frac{5650}{3}$£¨ÍòÔª£©£»
±È½ÏÖªE£¨Z£©×î´ó£¬¼´Ñз¢B¡¢CÁ½ÖÖ²úÆ·´øÀ´µÄ²úÆ·ÊÕÒæ×î´ó£®

µãÆÀ ±¾Ì⿼²éÁËËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆäÊýѧÆÚÍû¡¢Ï໥¶ÀÁ¢Ê¼þµÄ¸ÅÂÊ¡¢Ï໥¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒan+1=an+$\frac{2}{{a}_{n}}$-1£¨n¡ÊN*£©£¬{an}µÄǰnÏîºÍÊÇSn£®
£¨¢ñ£©Èô{an}ÊǵÝÔöÊýÁУ¬Çóa1µÄȡֵ·¶Î§£»
£¨¢ò£©Èôa1£¾2£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐSn¡Ýna1-$\frac{1}{3}$£¨n-1£©£¬Ö¤Ã÷£ºSn£¼2n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª²»µÈʽax2-3x+6£¾4µÄ½â¼¯Îª {x|x£¼1»òx£¾b}£¨b£¾1£©£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©½â²»µÈʽax2-£¨ac+b£©x+bc£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Éè¦Á1=2£¬¦Á2=-3.2£¬Ôò¦Á1£¬¦Á2·Ö±ðÊǵڶþÏóÏ޵Ľǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èô¦ÁÊǵڶþÏóÏ޽ǣ¬Ôò$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{\frac{1}{2}+\frac{1}{2}cos2¦Á}$µÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®cos2$\frac{¦Á}{2}$B£®sin2$\frac{¦Á}{2}$C£®cos2¦ÁD£®sin2¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÉèÏòÁ¿$\overrightarrow a$£¬$\overrightarrow b$²»Æ½ÐУ¬ÏòÁ¿$¦Ë\overrightarrow a+\overrightarrow b$Óë$\overrightarrow a+2\overrightarrow b$ƽÐУ¬ÔòʵÊý¦ËµÈÓÚ£¨¡¡¡¡£©
A£®2B£®4C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÊýÁÐ{an}Âú×ã${a_1}+3{a_2}+{3^2}{a_3}+¡­+{3^{n-1}}{a_n}=\frac{n}{3}£¨n¡Ê{N^*}£©$
£¨1£©Çóan£»
£¨2£©Éè${b_n}=\frac{n}{a_n}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¡°1+2+22+¡­+2n-1=2n-1£¨n¡ÊN+£©¡±µÄ¹ý³ÌÖУ¬µÚ¶þ²½n=kʱµÈʽ³ÉÁ¢£¬Ôòµ±n=k+1ʱ£¬Ó¦µÃµ½£¨¡¡¡¡£©
A£®1+2+22+¡­+2k-2+2k-1=2k+1-1B£®1+2+22+¡­+2k+2k+1=2k-1+2k+1
C£®1+2+22+¡­+2k-1+2k+1=2k+1-1D£®1+2+22+¡­+2k-1+2k=2k+1-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪd£¨d¡ÊN*£©µÄµÈ²îÊýÁУ¬Èô61ÊǸÃÊýÁÐÖеÄÒ»ÏÔò¹«²îd²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®3B£®5C£®4D£®9

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸