精英家教网 > 高中数学 > 题目详情
5.设α1=2,α2=-3.2,则α1,α2分别是第二象限的角.

分析 分别判断角的范围即可得到结论.

解答 解:∵$\frac{π}{2}$<2<π,∴α1是第二象限角.
∵-$\frac{3π}{2}$<-3.2<-π,∴α2是第二象限角.
故答案为:二.

点评 本题主要考查角的象限的确定,根据条件判断角的范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}的首项为$\frac{3}{2}$,公比为-$\frac{1}{2}$,其前n项和为Sn,若对任意的n∈N*,都有Sn-$\frac{1}{{S}_{n}}$∈[s,t],则t-s的最小值为$\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-4x+2(1-a)lnx,(a∈R且a≠0).
(Ⅰ)当a=2时,求函数f(x)在区间[e,+∞]上的单调性;
(Ⅱ)当a>2时,求函数f(x)在区间[e,+∞]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,输出的S值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设曲线y=xn+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2017x1+log2017x2+…+log2017x2016的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y=ax2(a>0)的焦点为F,点P(4,$\frac{7}{2}$),且抛物线C恰好经过线段PF的中点.
(I)求a的值;
(Ⅱ)过点P的直线l交抛物线C于A,B两点,设直线FA,FP,FB的斜率分别为k1,k2,k3,则是否有等式k1+k3=$\frac{8}{9}$k2成立?若能成立,求出直线l的方程;若不能成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司的研发团队,可以进行A、B、C三种新产品的研发,研发成功的概率分别为P(A)=$\frac{4}{5}$,P(B)=$\frac{2}{3}$,P(C)=$\frac{1}{2}$,三个产品的研发相互独立.
(1)求该公司恰有两个产品研发成功的概率;
(2)已知A、B、C三种产品研发成功后带来的产品收益(单位:万元)分别为1000、2000、1100,为了收益最大化,公司从中选择两个产品研发,请你从数学期望的角度来考虑应该研发哪两个产品?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.曲线$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}$(θ为参数)上的点与定点A(-1,-1)距离的最小值是$\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数$f(x)=sin(ωx-\frac{3π}{4})(ω>0)的最小正周期为π$
(Ⅰ)求ω;      
(Ⅱ)若$f(\frac{α}{2}+\frac{3π}{8})=\frac{24}{25}$,且$α∈(-\frac{π}{2},\frac{π}{2})$,求sin2α的值.
(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象(完成列表并作图).

查看答案和解析>>

同步练习册答案